Thermal transport in 2D nanophononic metamaterials embedded with cylindrical arrays

被引:0
作者
Cao, Wei [1 ]
Shi, Jing [2 ]
Xiong, Rui [2 ]
Wang, Ziyu [1 ]
Liu, Zhengyou [2 ]
机构
[1] Wuhan Univ, Inst Technol Sci, Wuhan, Peoples R China
[2] Wuhan Univ, Sch Phys & Technol, Minist Educ, Key Lab Artificial Micro & Nanostruct, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanophononic metamaterials; Thermal transport; Finite element method;
D O I
10.1016/j.physleta.2023.128997
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The development of nanophononic metamaterials presents new opportunities for controlling thermal conduction. Using the theory of elasticity and the finite element method, we systematically investigated the thermal conductance of two-dimensional nanophononic metamaterials embedded with cylindrical arrays. When the sound speed of the embedded material is higher than matrix, there is a weak correlation between structural parameters and thermal conductance. However, when the nanophononic metamaterials are embedded with lower sound speed materials, they exhibit clear local resonances. The local resonance frequency can move to a higher or lower range depending on the filler radius. Local resonances reduce group velocity but greatly increase the phonon density of states, contributing to an increase in thermal conductance. Furthermore, this conclusion applies to nanophononic metamaterials with different matrix materials.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 23 条
[1]   Heat conduction engineering in pillar-based phononic crystals [J].
Anufriev, Roman ;
Nomura, Masahiro .
PHYSICAL REVIEW B, 2017, 95 (15)
[2]   Reduction of thermal conductance by coherent phonon scattering in two-dimensional phononic crystals of different lattice types [J].
Anufriev, Roman ;
Nomura, Masahiro .
PHYSICAL REVIEW B, 2016, 93 (04)
[3]   Thermal conductance boost in phononic crystal nanostructures [J].
Anufriev, Roman ;
Nomura, Masahiro .
PHYSICAL REVIEW B, 2015, 91 (24)
[4]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[5]   Fundamentals, progress and perspectives on high-frequency phononic crystals [J].
Cang, Yu ;
Jin, Yabin ;
Djafari-Rouhani, Bahram ;
Fytas, George .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (19)
[6]   A review on effect of heat generation and various thermal management systems for lithium ion battery used for electric vehicle [J].
Choudhari, V. G. ;
Dhoble, A. S. ;
Sathe, T. M. .
JOURNAL OF ENERGY STORAGE, 2020, 32
[7]   Control electronics for semiconductor spin qubits [J].
Geck, Lotte ;
Kruth, Andre ;
Bluhm, Hendrik ;
van Waasen, Stefan ;
Heinen, Stefan .
QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (01)
[8]   Hypersonic phononic crystals [J].
Gorishnyy, T ;
Ullal, CK ;
Maldovan, M ;
Fytas, G ;
Thomas, EL .
PHYSICAL REVIEW LETTERS, 2005, 94 (11)
[9]   Phonon dispersion in hypersonic two-dimensional phononic crystal membranes [J].
Graczykowski, B. ;
Sledzinska, M. ;
Alzina, F. ;
Gomis-Bresco, J. ;
Reparaz, J. S. ;
Wagner, M. R. ;
Torres, C. M. Sotomayor .
PHYSICAL REVIEW B, 2015, 91 (07)
[10]   Review of Modern Spacecraft Thermal Control Technologies [J].
Hengeveld, Derek W. ;
Mathison, Margaret M. ;
Braun, James E. ;
Groll, Eckhard A. ;
Williams, Andrew D. .
HVAC&R RESEARCH, 2010, 16 (02) :189-220