Optimal Design of Sensors via Geometric Criteria

被引:2
作者
Ftouhi, Ilias [1 ,2 ]
Zuazua, Enrique [2 ,3 ,4 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math, Dhahran, Saudi Arabia
[2] Friedrich Alexander Univ Erlangen Nurnberg, Chair Dynam Control Machine Learning & Numer, Dept Math, Alexander Humboldt Professorship, D-91058 Erlangen, Germany
[3] Fdn Deusto, Chair Computat Math, Ave Univ 24, Bilbao 48007, Spain
[4] Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
关键词
Shape optimization; Convex geometry; Sensor design; CHEBYSHEV CENTERS; PLACEMENT; SETS;
D O I
10.1007/s12220-023-01301-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a convex set Omega and look for the optimal convex sensor omega subset of Omega of a given measure that minimizes the maximal distance to the points of Omega. This problem can be written as follows [GRAPHICS] . where c is an element of (0, |Omega|), d(H) being the Hausdorff distance. We show that the parametrization via the support functions allows us to formulate the geometric optimal shape design problem as an analytic one. By proving a judicious equivalence result, the shape optimization problem is approximated by a simpler minimization problem of a quadratic function under linear constraints. We then present some numerical results and qualitative properties of the optimal sensors and exhibit an unexpected symmetry breaking phenomenon.
引用
收藏
页数:29
相关论文
共 28 条
[1]   Chebyshev centres, Jung constants, and their applications [J].
Alimov, A. R. ;
Tsar'kov, I. G. .
RUSSIAN MATHEMATICAL SURVEYS, 2019, 74 (05) :775-849
[2]  
Antunes PRS, 2022, COMPUT OPTIM APPL, V82, P107, DOI 10.1007/s10589-022-00360-4
[3]   Semidefinite programming for optimizing convex bodies under width constraints [J].
Bayen, Terence ;
Henrion, Didier .
OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (06) :1073-1099
[4]   Numerical Shape Optimization Among Convex Sets [J].
Bogosel, Beniamin .
APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 87 (01)
[5]  
Buttazzo G, 2002, PROG NONLINEAR DIFFE, V51, P41
[6]   MINIMUM PROBLEMS OVER SETS OF CONCAVE FUNCTIONS AND RELATED QUESTIONS [J].
BUTTAZZO, G ;
FERONE, V ;
KAWOHL, B .
MATHEMATISCHE NACHRICHTEN, 1995, 173 :71-89
[7]  
Buttazzo G, 2003, ANN SCUOLA NORM-SCI, V2, P631
[8]   Geodesics in Heat: A New Approach to Computing Distance Based on Heat Flow [J].
Crane, Keenan ;
Weischedel, Clarisse ;
Wardetzky, Max .
ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (05)
[9]   THEORY OF MAX-MIN WITH APPLICATIONS [J].
DANSKIN, JM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1966, 14 (04) :641-&
[10]  
Fattah Z., SOME COUNTERINTUITIV