Osteogenic Differentiation Effect of Human Periodontal Ligament Stem-Cell Initial Cell Density on Autologous Cells and Human Bone Marrow Stromal Cells

被引:6
|
作者
Wang, Jing [1 ]
Qiao, Qingchen [1 ]
Sun, Yaxi [1 ]
Yu, Wenting [1 ]
Wang, Jiran [1 ]
Zhu, Minjia [1 ]
Yang, Kai [1 ]
Huang, Xiaofeng [2 ]
Bai, Yuxing [1 ]
机构
[1] Capital Med Univ, Beijing Stomatol Hosp, Sch Stomatol, Dept Orthodont, Beijing 100050, Peoples R China
[2] Capital Med Univ, Beijing Friendship Hosp, Dept Stomatol, Beijing 100050, Peoples R China
基金
中国国家自然科学基金;
关键词
cell density; cell proliferation; hPDLSCs; osteoblast differentiation; exosomes; GENE-EXPRESSION; ADIPOSE-TISSUE; PROLIFERATION; AUTOPHAGY; OSTERIX; RUNX2;
D O I
10.3390/ijms24087133
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Stem cells have differentiation and regulation functions. Here, we discussed the impact of cell culture density on stem cell proliferation, osteoblastogenesis, and regulation. To discuss the effect of the initial culture density of human periodontal ligament stem cells (hPDLSCs) on the osteogenic differentiation of autologous cells, we found that the hPDLSC proliferation rate decreased with an increase in the initial plating density (0.5-8 x 10(4) cells/cm(2)) for the 48 h culture cycle. After hPDLSCs induced osteogenic differentiation for 14 days with different initial cell culture densities, the expression of osteoprotegerin (OPG) and runt-related transcription factor 2(RUNX2) and the OPG/ Receptor Activator of Nuclear Factor-kappa B Ligand (RANKL) ratio were the highest in the hPDLSCs initially plated at a density of 2 x 10(4) cells/cm(2), and the average cell calcium concentration was also the highest. To study hPDLSCs regulating the osteoblastic differentiation of other cells, we used 50 mu g/mL of secreted exosomes derived from hPDLSCs cultured using different initial cell densities to induce human bone marrow stromal cell (hBMSC) osteogenesis. After 14 days, the results indicated that the gene expression of OPG, Osteocalcin(OCN,)RUNX2, and osterix and the OPG/RANKL ratio were the highest in the 2 x 10(4) cells/cm(2) initial cell density group, and the average calcium concentration was also the highest. This provides a new idea for the clinical application of stem cell osteogenesis.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Adipogenic differentiation effect of human periodontal ligament stem cell initial cell density on autologous cells and human bone marrow stromal cells
    Wang, Jing
    Gu, Yingzhi
    Sun, Yaxi
    Qiao, Qingchen
    Huang, Xiaofeng
    Yang, Kai
    Bai, Yuxing
    CELL BIOCHEMISTRY AND FUNCTION, 2024, 42 (05)
  • [2] Effect of puerarin on osteogenic differentiation of human periodontal ligament stem cells
    Li, Jun
    Peng, Youjian
    JOURNAL OF INTERNATIONAL MEDICAL RESEARCH, 2019,
  • [3] Osteogenic growth peptide enhances osteogenic differentiation of human periodontal ligament stem cells
    Purbantoro, Steven Dwi
    Osathanon, Thanaphum
    Nantavisai, Sirirat
    Sawangmake, Chenphop
    HELIYON, 2022, 8 (07)
  • [4] Effect of Boron on Osteogenic Differentiation of Human Bone Marrow Stromal Cells
    Ying, Xiaozhou
    Cheng, Shaowen
    Wang, Wei
    Lin, Zhongqin
    Chen, Qingyu
    Zhang, Wei
    Kou, Dongquan
    Shen, Yue
    Cheng, Xiaojie
    Rompis, Ferdinand An
    Peng, Lei
    Lu, Chuan Zhu
    BIOLOGICAL TRACE ELEMENT RESEARCH, 2011, 144 (1-3) : 306 - 315
  • [5] Effect of Boron on Osteogenic Differentiation of Human Bone Marrow Stromal Cells
    Xiaozhou Ying
    Shaowen Cheng
    Wei Wang
    Zhongqin Lin
    Qingyu Chen
    Wei Zhang
    Dongquan Kou
    Yue Shen
    Xiaojie Cheng
    Ferdinand An Rompis
    Lei Peng
    Chuan zhu Lu
    Biological Trace Element Research, 2011, 144 : 306 - 315
  • [6] Effect of orthodontic forces on the osteogenic differentiation of human periodontal ligament stem cells
    Yoo, Ji Hyun
    Lee, Seung-Min
    Bae, Moon Kyoung
    Lee, Dong Joon
    Ko, Ching-Chang
    Kim, Yong-Il
    Kim, Hyung Joon
    JOURNAL OF ORAL SCIENCE, 2018, 60 (03) : 438 - 445
  • [7] Effects of deferoxamine on the osteogenic differentiation of human periodontal ligament cells
    Mu, Sen
    Guo, Shuanlong
    Wang, Xiang
    Zhan, Yuanbo
    Li, Ying
    Jiang, Ying
    Zhang, Ruimin
    Zhang, Bin
    MOLECULAR MEDICINE REPORTS, 2017, 16 (06) : 9579 - 9586
  • [8] Human periodontal ligament stem cells and hormesis: Enhancing cell renewal and cell differentiation
    Calabrese, Edward J.
    PHARMACOLOGICAL RESEARCH, 2021, 173
  • [9] Effects of mechanical vibration on proliferation and osteogenic differentiation of human periodontal ligament stem cells
    Zhang, Chunxiang
    Li, Ji
    Zhang, Linkun
    Zhou, Yi
    Hou, Weiwei
    Quan, Huixin
    Li, Xiaoyu
    Chen, Yangxi
    Yu, Haiyang
    ARCHIVES OF ORAL BIOLOGY, 2012, 57 (10) : 1395 - 1407
  • [10] Simvastatin induces the osteogenic differentiation of human periodontal ligament stem cells
    Zhao, Bing-jiao
    Liu, Yue-hua
    FUNDAMENTAL & CLINICAL PHARMACOLOGY, 2014, 28 (05) : 583 - 592