Drug/bioactive eluting chitosan composite foams for osteochondral tissue engineering

被引:12
作者
Samie, Muhammad [1 ,2 ,3 ,4 ,5 ]
Khan, Ather Farooq [1 ]
Rahman, Saeed Ur [6 ]
Iqbal, Haffsah [1 ]
Yameen, Muhammad Arfat [2 ]
Chaudhry, Aqif Anwar [1 ]
Galeb, Hanaa A. [3 ,7 ]
Halcovitch, Nathan R. [3 ]
Hardy, John G. [3 ,4 ]
机构
[1] COMSATS Univ Islamabad, Interdisciplinary Res Ctr Biomed Mat, Lahore Campus, Lahore 54000, Pakistan
[2] COMSATS Univ Islamabad, Dept Pharm, Abbottabad Campus, Abbottabad 22060, Pakistan
[3] Univ Lancaster, Dept Chem, Lancaster LA1 4YB, England
[4] Univ Lancaster, Mat Sci Inst, Lancaster LA1 4YW, Lancs, England
[5] Khyber Med Univ, Inst Pharmaceut Sci, Peshawar 25100, Khyber Pakhtunk, Pakistan
[6] Khyber Med Univ, Inst Basic Med Sci, Peshawar 25100, Khyber Pakhtunk, Pakistan
[7] King Abdulaziz Univ, Sci & Arts Coll, Dept Chem, Rabigh Campus, Jeddah 21577, Saudi Arabia
关键词
Chitosan; Composites; Osteogenesis; POROUS SCAFFOLDS; BONE; CARTILAGE; DEFECTS; KNEE; TRIAMCINOLONE; MICROSPHERES; BIOMATERIALS; REGENERATION;
D O I
10.1016/j.ijbiomac.2022.12.293
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Joint defects associated with a variety of etiologies often extend deep into the subchondral bone leading to functional impairment and joint immobility, and it is a very challenging task to regenerate the bone-cartilage interface offering significant opportunities for biomaterial-based interventions to improve the quality of life of patients. Herein drug-/bioactive-loaded porous tissue scaffolds incorporating nano-hydroxyapatite (nHAp), chitosan (CS) and either hydroxypropyl methylcellulose (HPMC) or Bombyx mori silk fibroin (SF) are fabricated through freeze drying method as subchondral bone substitute. A combination of spectroscopy and microscopy (Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), and X-ray fluorescence (XRF) were used to analyze the structure of the porous biomaterials. The compressive mechanical properties of these scaffolds are biomimetic of cancellous bone tissues and capable of releasing drugs/bioactives (exemplified with triamcinolone acetonide, TA, or transforming growth factor-beta 1, TGF-beta 1, respectively) over a period of days. Mouse preosteoblast MC3T3-E1 cells were observed to adhere and proliferate on the tissue scaffolds as confirmed by the cell attachment, live-dead assay and alamarBlueTM assay. Interestingly, RT-qPCR analysis showed that the TA downregulated inflammatory biomarkers and upregulated the bone-specific biomarkers, suggesting such tissue scaffolds have long-term potential for clinical application.
引用
收藏
页码:561 / 574
页数:14
相关论文
共 93 条
[1]   Porous scaffolds for bone regeneration [J].
Abbasi, Naghmeh ;
Hamlet, Stephen ;
Love, Robert M. ;
Nguyen, Nam-Trung .
JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES, 2020, 5 (01) :1-9
[2]   Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering [J].
Abdollahiyan, Parinaz ;
Oroojalian, Fatemeh ;
Mokhtarzadeh, Ahad ;
de la Guardia, Miguel .
BIOTECHNOLOGY JOURNAL, 2020, 15 (12)
[3]   Chitosan as biomaterial in drug delivery and tissue engineering [J].
Ahsan, Saad M. ;
Thomas, Mathai ;
Reddy, Kranthi K. ;
Sooraparaju, Sujata Gopal ;
Asthana, Amit ;
Bhatnagar, Ira .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 110 :97-109
[4]   Osteochondral tissue engineering: Perspectives for clinical application and preclinical development [J].
Ai, Chengchong ;
Lee, Yee Han Dave ;
Tan, Xuan Hao ;
Tan, Si Heng Sharon ;
Hui, James Hoi Po ;
Goh, James Cho-Hong .
JOURNAL OF ORTHOPAEDIC TRANSLATION, 2021, 30 :93-102
[5]  
Ajisawa A., 1998, J.Seric. Sci. Jpn, V67, P91, DOI DOI 10.11416/KONTYUSHIGEN1930.67.91
[6]   Bone Morphogenetic Protein-6-loaded Chitosan Scaffolds Enhance the Osteoblastic Characteristics of MC3T3-E1 Cells [J].
Akman, Abdullah C. ;
Tigli, R. Seda ;
Gumusderelioglu, Menemse ;
Nohutcu, Rahime M. .
ARTIFICIAL ORGANS, 2010, 34 (01) :65-74
[7]   Incorporation of inorganic bioceramics into electrospun scaffolds for tissue engineering applications: A review [J].
Bahremandi-Toloue, Elahe ;
Mohammadalizadeh, Zahra ;
Mukherjee, Shayanti ;
Karbasi, Saeed .
CERAMICS INTERNATIONAL, 2022, 48 (07) :8803-8837
[8]   Biomimetic Scaffolds Modulate the Posttraumatic Inflammatory Response in Articular Cartilage Contributing to Enhanced Neoformation of Cartilaginous Tissue In Vivo [J].
Bauza-Mayol, Guillermo ;
Quintela, Marcos ;
Brozovich, Ava ;
Hopson, Michael ;
Shaikh, Shazad ;
Cabrera, Fernando ;
Shi, Aaron ;
Niclot, Federica Banche ;
Paradiso, Francesca ;
Combellak, Emma ;
Jovic, Tom ;
Rees, Paul ;
Tasciotti, Ennio ;
Francis, Lewis W. ;
Mcculloch, Patrick ;
Taraballi, Francesca .
ADVANCED HEALTHCARE MATERIALS, 2022, 11 (01)
[9]   Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications [J].
Bhardwaj, Nandana ;
Kundu, Subhas C. .
CARBOHYDRATE POLYMERS, 2011, 85 (02) :325-333
[10]   Intra-articular injection of triamcinolone acetonide sustains macrophage levels and aggravates osteophytosis during degenerative joint disease in mice [J].
Blanco, Mauricio N. Ferrao ;
Jenniskens, Yvonne M. Bastiaansen ;
Kops, Nicole ;
Chavli, Athina ;
Narcisi, Roberto ;
Botter, Sander M. ;
Leenen, Pieter J. M. ;
van Osch, Gerjo J. V. M. ;
Fahy, Niamh .
BRITISH JOURNAL OF PHARMACOLOGY, 2022, 179 (11) :2771-2784