MPNet: temporal knowledge graph completion based on a multi-policy network

被引:0
|
作者
Wang, Jingbin [1 ]
Wu, Renfei [1 ]
Wu, Yuwei [1 ]
Zhang, Fuyuan [1 ]
Zhang, Sirui [1 ]
Guo, Kun [1 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350108, Fujian, Peoples R China
关键词
Knowledge graph completion; Reinforcement learning; Link prediction; Temporal knowledge graphs;
D O I
10.1007/s10489-024-05320-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Temporal knowledge graphs completion (TKGC) is a critical task that aims to forecast facts that will occur in future timestamps. It has attracted increasing research interest in recent years. Among the many approaches, reinforcement learning-based methods have gained attention due to their efficient performance and interpretability. However, these methods still face two challenges in the prediction task. First, a single policy network lacks the capability to capture the dynamic and static features of entities and relationships separately. Consequently, it fails to evaluate candidate actions comprehensively from multiple perspectives. Secondly, the composition of the action space is incomplete, often guiding the agent towards distant historical events and missing the answers in recent history. To address these challenges, this paper proposes a Temporal Knowledge Graph Completion Based on a Multi-Policy Network(MPNet). It constructs three policies from the aspects of static entity-relation, dynamic relationships, and dynamic entities, respectively, to evaluate candidate actions comprehensively. In addition, this paper creates a more diverse action space that guides the agent in investigating answers within historical subgraphs more effectively. The effectiveness of MPNet is validated through an extrapolation setting, and extensive experiments conducted on three benchmark datasets demonstrate the superior performance of MPNet compared to existing state-of-the-art methods.
引用
收藏
页码:2491 / 2507
页数:17
相关论文
共 50 条
  • [31] Temporal knowledge graph completion based on product space and contrastive learning of commonsense
    Chen, Zhenghao
    Wu, Jianbin
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2025, : 763 - 782
  • [32] A Dynamic Convolutional Network-Based Model for Knowledge Graph Completion
    Peng, Haoliang
    Wu, Yue
    INFORMATION, 2022, 13 (03)
  • [33] Dynamic Embedding Graph Attention Networks for Temporal Knowledge Graph Completion
    Wang, Jingqi
    Zhu, Cui
    Zhu, Wenjun
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2022, 13368 : 722 - 734
  • [34] Hyper-node Relational Graph Attention Network for Multi-modal Knowledge Graph Completion
    Liang, Shuang
    Zhu, Anjie
    Zhang, Jiasheng
    Shao, Jie
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (02)
  • [35] Research on Knowledge Graph Completion Based upon Knowledge Graph Embedding
    Feng, Tuoyu
    Wu, Yongsheng
    Li, Libing
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 1335 - 1342
  • [36] An Embedding Model for Knowledge Graph Completion Based on Graph Sub-Hop Convolutional Network
    He, Haitao
    Niu, Haoran
    Feng, Jianzhou
    Nie, Junlan
    Zhang, Yangsen
    Ren, Jiadong
    BIG DATA RESEARCH, 2022, 30
  • [37] A Quaternion-Embedded Capsule Network Model for Knowledge Graph Completion
    Chen, Heng
    Wang, Weimei
    Li, Guanyu
    Shi, Yimin
    IEEE ACCESS, 2020, 8 : 100890 - 100904
  • [38] Heterogeneous Graph Neural Network Knowledge Graph Completion Model Based on Improved Attention Mechanism
    Shi, Junkang
    Li, Ming
    Zhao, Jing
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT IV, 2023, 14257 : 423 - 434
  • [39] Graph attention network with dynamic representation of relations for knowledge graph completion
    Zhang, Xin
    Zhang, Chunxia
    Guo, Jingtao
    Peng, Cheng
    Niu, Zhendong
    Wu, Xindong
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 219
  • [40] RAGAT: Relation Aware Graph Attention Network for Knowledge Graph Completion
    Liu, Xiyang
    Tan, Huobin
    Chen, Qinghong
    Lin, Guangyan
    IEEE ACCESS, 2021, 9 : 20840 - 20849