Global Guided Cross-Modal Cross-Scale Network for RGB-D Salient Object Detection

被引:1
作者
Wang, Shuaihui [1 ]
Jiang, Fengyi [1 ]
Xu, Boqian [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
基金
中国国家自然科学基金;
关键词
RGB-D salient object detection; global guidance; cross-modal cross-scale fusion;
D O I
10.3390/s23167221
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
RGB-D saliency detection aims to accurately localize salient regions using the complementary information of a depth map. Global contexts carried by the deep layer are key to salient objection detection, but they are diluted when transferred to shallower layers. Besides, depth maps may contain misleading information due to the depth sensors. To tackle these issues, in this paper, we propose a new cross-modal cross-scale network for RGB-D salient object detection, where the global context information provides global guidance to boost performance in complex scenarios. First, we introduce a global guided cross-modal and cross-scale module named G(2)CMCSM to realize global guided cross-modal cross-scale fusion. Then, we employ feature refinement modules for progressive refinement in a coarse-to-fine manner. In addition, we adopt a hybrid loss function to supervise the training of G(2)CMCSM over different scales. With all these modules working together, G(2)CMCSM effectively enhances both salient object details and salient object localization. Extensive experiments on challenging benchmark datasets demonstrate that our G(2)CMCSM outperforms existing state-of-the-art methods.
引用
收藏
页数:11
相关论文
共 42 条
[11]  
Ju R, 2014, IEEE IMAGE PROC, P1115, DOI 10.1109/ICIP.2014.7025222
[12]   Hierarchical Alternate Interaction Network for RGB-D Salient Object Detection [J].
Li, Gongyang ;
Liu, Zhi ;
Chen, Minyu ;
Bai, Zhen ;
Lin, Weisi ;
Ling, Haibin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :3528-3542
[13]   Cross-Modal Weighting Network for RGB-D Salient Object Detection [J].
Li, Gongyang ;
Liu, Zhi ;
Ye, Linwei ;
Wang, Yang ;
Ling, Haibin .
COMPUTER VISION - ECCV 2020, PT XVII, 2020, 12362 :665-681
[14]   Saliency Detection on Light Field [J].
Li, Nianyi ;
Ye, Jinwei ;
Ji, Yu ;
Ling, Haibin ;
Yu, Jingyi .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :2806-2813
[15]   Feature Pyramid Networks for Object Detection [J].
Lin, Tsung-Yi ;
Dollar, Piotr ;
Girshick, Ross ;
He, Kaiming ;
Hariharan, Bharath ;
Belongie, Serge .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :936-944
[16]   A Simple Pooling-Based Design for Real-Time Salient Object Detection [J].
Liu, Jiang-Jiang ;
Hou, Qibin ;
Cheng, Ming-Ming ;
Feng, Jiashi ;
Jiang, Jianmin .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3912-3921
[17]   DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection [J].
Liu, Nian ;
Han, Junwei .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :678-686
[18]   Receptive Field Block Net for Accurate and Fast Object Detection [J].
Liu, Songtao ;
Huang, Di ;
Wang, Yunhong .
COMPUTER VISION - ECCV 2018, PT XI, 2018, 11215 :404-419
[19]  
Mahadevan V, 2009, PROC CVPR IEEE, P1007, DOI 10.1109/CVPRW.2009.5206573
[20]  
Niu YZ, 2012, PROC CVPR IEEE, P454, DOI 10.1109/CVPR.2012.6247708