Global Guided Cross-Modal Cross-Scale Network for RGB-D Salient Object Detection

被引:1
作者
Wang, Shuaihui [1 ]
Jiang, Fengyi [1 ]
Xu, Boqian [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
基金
中国国家自然科学基金;
关键词
RGB-D salient object detection; global guidance; cross-modal cross-scale fusion;
D O I
10.3390/s23167221
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
RGB-D saliency detection aims to accurately localize salient regions using the complementary information of a depth map. Global contexts carried by the deep layer are key to salient objection detection, but they are diluted when transferred to shallower layers. Besides, depth maps may contain misleading information due to the depth sensors. To tackle these issues, in this paper, we propose a new cross-modal cross-scale network for RGB-D salient object detection, where the global context information provides global guidance to boost performance in complex scenarios. First, we introduce a global guided cross-modal and cross-scale module named G(2)CMCSM to realize global guided cross-modal cross-scale fusion. Then, we employ feature refinement modules for progressive refinement in a coarse-to-fine manner. In addition, we adopt a hybrid loss function to supervise the training of G(2)CMCSM over different scales. With all these modules working together, G(2)CMCSM effectively enhances both salient object details and salient object localization. Extensive experiments on challenging benchmark datasets demonstrate that our G(2)CMCSM outperforms existing state-of-the-art methods.
引用
收藏
页数:11
相关论文
共 42 条
[1]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[2]   Multi-modal fusion network with multi-scale multi-path and cross-modal interactions for RGB-D salient object detection [J].
Chen, Hao ;
Li, Youfu ;
Su, Dan .
PATTERN RECOGNITION, 2019, 86 :376-385
[3]   Reverse Attention for Salient Object Detection [J].
Chen, Shuhan ;
Tan, Xiuli ;
Wang, Ben ;
Hu, Xuelong .
COMPUTER VISION - ECCV 2018, PT IX, 2018, 11213 :236-252
[4]   CFIDNet: cascaded feature interaction decoder for RGB-D salient object detection [J].
Chen, Tianyou ;
Hu, Xiaoguang ;
Xiao, Jin ;
Zhang, Guofeng ;
Wang, Shaojie .
NEURAL COMPUTING & APPLICATIONS, 2022, 34 (10) :7547-7563
[5]   BBS-Net: RGB-D Salient Object Detection with a Bifurcated Backbone Strategy Network [J].
Fan, Deng-Ping ;
Zhai, Yingjie ;
Borji, Ali ;
Yang, Jufeng ;
Shao, Ling .
COMPUTER VISION - ECCV 2020, PT XII, 2020, 12357 :275-292
[6]   Structure-measure: A New Way to Evaluate Foreground Maps [J].
Fan, Deng-Ping ;
Cheng, Ming-Ming ;
Liu, Yun ;
Li, Tao ;
Borji, Ali .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :4558-4567
[7]  
Fan DP, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P698
[8]   Rethinking RGB-D Salient Object Detection: Models, Data Sets, and Large-Scale Benchmarks [J].
Fan, Deng-Ping ;
Lin, Zheng ;
Zhang, Zhao ;
Zhu, Menglong ;
Cheng, Ming-Ming .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (05) :2075-2089
[9]   JL-DCF: Joint Learning and Densely-Cooperative Fusion Framework for RGB-D Salient Object Detection [J].
Fu, Keren ;
Fan, Deng-Ping ;
Ji, Ge-Peng ;
Zhao, Qijun .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :3049-3059
[10]   Calibrated RGB-D Salient Object Detection [J].
Ji, Wei ;
Li, Jingjing ;
Yu, Shuang ;
Zhang, Miao ;
Piao, Yongri ;
Yao, Shunyu ;
Bi, Qi ;
Ma, Kai ;
Zheng, Yefeng ;
Lu, Huchuan ;
Cheng, Li .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :9466-9476