A general modification of the V-Q-x relationship of the contact-separation mode triboelectric nanogenerator

被引:5
|
作者
Zhang, He [1 ,2 ]
Wang, Li [1 ]
Zhang, Cun [3 ,4 ]
Shu, Jiangpeng [1 ]
Huang, Kangxu [1 ]
Song, Ying [5 ]
机构
[1] Zhejiang Univ, Coll Civil Engn & Architecture, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, Ctr Balance Architecture, Hangzhou 310058, Peoples R China
[3] Tibet Agr & Anim Husb Univ, Coll Water Conservancy & Civil Engn, Linzhi 860000, Peoples R China
[4] Res Ctr Civil Hydraul & Power Engn Tibet, Linzhi 860000, Peoples R China
[5] ZCCC Rd & Bridge Construct Co Ltd, Hangzhou 310051, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
CS-TENG; Transient voltage; Multi-parameter analysis; V-Q-x relationship; FIGURE-OF-MERITS; POWER OUTPUT; OPTIMIZATION;
D O I
10.1016/j.nanoen.2023.108716
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The V -Q -x relationship is of great importance in theoretical research of triboelectric nanogenerators (TENGs), which however is not entirely consistent with the experimental results. Here, we propose a general modification of the V -Q -x relationship of the contact-separation mode TENG with Fourier transform method. By separating the stable periodic term and the damping term which decays gradually with time from the original V-Q-x rela-tionship, we determine the stable voltage with a constant peak value and modify it to the transient output voltage. The correctness of this modified theoretical relationship has been verified through experimental results. Through this modification, the output performance of TENG-based energy harvesting devices can be more accurately and directly predicted, and theoretical guidance can be provided for TENG-based sensors to invert monitoring target information. The development offers good theoretical guidance, which can advance the theoretical design and optimization of TENG devices.
引用
收藏
页数:8
相关论文
共 47 条
  • [1] Comparative study on the contact-separation mode triboelectric nanogenerator
    Hasan, Saima
    Kouzani, Abbas Z.
    Adams, Scott
    Long, John
    Mahmud, M. A. Parvez
    Journal of Electrostatics, 2022, 116
  • [2] Comparative study on the contact-separation mode triboelectric nanogenerator
    Hasan, Saima
    Kouzani, Abbas Z.
    Adams, Scott
    Long, John
    Mahmud, M. A. Parvez
    JOURNAL OF ELECTROSTATICS, 2022, 116
  • [3] A general optimization approach for contact-separation triboelectric nanogenerator
    Zhang, He
    Quan, Liwei
    Chen, Jinkai
    Xu, Chengkan
    Zhang, Chenhui
    Dong, Shurong
    Lu, Chaofeng
    Luo, Jikui
    NANO ENERGY, 2019, 56 : 700 - 707
  • [4] Performance optimization of contact-separation mode triboelectric nanogenerator using dielectric nanograting
    Kumar, Rajat
    Goyal, Amit Kumar
    Massoud, Yehia
    RESULTS IN ENGINEERING, 2024, 22
  • [5] A contact-separation mode triboelectric nanogenerator for ocean wave impact energy harvesting
    Jurado, Ulises Tronco
    Pu, Suan Hui
    White, Neil M.
    2017 IEEE SENSORS, 2017, : 966 - 968
  • [6] Numerical and Machine Learning-Based Triboelectric Nanogenerator Simulators: Contact-Separation Mode
    Okbaz, Abdulkerim
    Yar, Adem
    Lin, Geng-Sheng
    Tong, Zhaohui
    ENERGY TECHNOLOGY, 2025,
  • [7] Theoretical Modelling For Enhancing Contact-Separation Triboelectric Nanogenerator Performance
    Abdelwahed, Ayman
    Amin, Mayssa
    Elosairy, Mohamed
    Abbasy, Nabil
    2016 ANNUAL CONNECTICUT CONFERENCE ON INDUSTRIAL ELECTRONICS, TECHNOLOGY AND AUTOMATION (CT-IETA), 2016,
  • [8] Power bonding diagram model and parameter analysis of contact-separation mode triboelectric nanogenerator
    Xu, Pengcheng
    Shen, Hui
    Li, Jing
    Zhang, Chun
    Guan, Dong
    ENERGY, 2023, 279
  • [9] Effects of interfacial acid-base on the performance of contact-separation mode triboelectric nanogenerator
    Liu, Yaoyao
    Liu, Guoxu
    Bu, Tianzhao
    Zhang, Chi
    MATERIALS TODAY ENERGY, 2021, 20
  • [10] Theoretical boundary and optimization methodology of contact-separation triboelectric nanogenerator
    Chen, Xiaoping
    Han, Chi
    Wen, Zhen
    Liu, Yina
    APPLIED MATERIALS TODAY, 2022, 29