Stabilized mixed finite element method for a quasistatic Maxwell viscoelastic model

被引:1
作者
Min, Ya [1 ]
Feng, Minfu [1 ]
机构
[1] Sichuan Univ, Coll Math, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Mixed finite method; Stabilized method; Maxwell viscoelastic model; Semi -discrete scheme; Fully discrete scheme; Error estimates; COMPUTATIONAL FLUID-DYNAMICS; STOKES PROBLEM; APPROXIMATION; FORMULATION; ELASTICITY; DIFFUSION;
D O I
10.1016/j.apnum.2023.07.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers a stabilized mixed finite element method (MFE) for a quasistatic Maxwell viscoelastic model based on the L2(⠂) x H1(⠂) variational framework. The spatial discretization uses arbitrary degree piecewise polynomials Pl - Pk(l > 0, k > 1) to approximate stress and velocity. The temporal discretization in the fully discrete method adopts a backward Euler difference scheme. We give a unified analysis to show the stability of the semi-discrete and fully discrete solutions and derive the corresponding priori error estimates. Numerical examples are provided to support the theoretical analysis. & COPY; 2023 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:22 / 42
页数:21
相关论文
共 36 条
[1]  
Bécache E, 2004, COMPUTAT GEOSCI, V8, P255
[2]   A finite element pressure gradient stabilization for the Stokes equations based on local projections [J].
Becker, R ;
Braack, M .
CALCOLO, 2001, 38 (04) :173-199
[3]   Analysis of finite element approximation of evolution problems in mixed form [J].
Boffi, D ;
Gastaldi, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (04) :1502-1526
[4]  
Brenner SC., 2008, MATH THEORY FINITE E, DOI [10.1007/978-0-387-75934-0, DOI 10.1007/978-0-387-75934-0]
[5]   STREAMLINE UPWIND PETROV-GALERKIN FORMULATIONS FOR CONVECTION DOMINATED FLOWS WITH PARTICULAR EMPHASIS ON THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BROOKS, AN ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 32 (1-3) :199-259
[6]   A Robust Weak Galerkin Finite Element Method for Linear Elasticity with Strong Symmetric Stresses [J].
Chen, Gang ;
Xie, Xiaoping .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2016, 16 (03) :389-408
[7]   Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection [J].
Codina, R ;
Blasco, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 182 (3-4) :277-300
[8]   Implementation of a stabilized finite element formulation for the incompressible Navier-Stokes equations based on a pressure gradient projection [J].
Codina, R ;
Blasco, J ;
Buscaglia, GC ;
Huerta, A .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2001, 37 (04) :419-444
[9]  
DOUGLAS J, 1989, MATH COMPUT, V52, P495, DOI 10.1090/S0025-5718-1989-0958871-X
[10]  
Fabrizio M., 1992, MATH PROBLEMS LINEAR