Direct Z-Scheme SnSe2/SnSe Heterostructure Passivated by Al2O3 for Highly Stable and Sensitive Photoelectrochemical Photodetectors

被引:41
作者
Lu, Chunhui [1 ]
Dong, Wen [1 ]
Zou, Yongqiang [1 ]
Wang, Zeyun [1 ]
Tan, Jiayu [1 ]
Bai, Xing [2 ]
Ma, Nan [1 ]
Ge, Yanqing [1 ]
Zhao, Qiyi [3 ]
Xu, Xinlong [1 ]
机构
[1] Northwest Univ, Inst Photon & Photon Technol, Int Collaborat Ctr Photoelect Technol & Nano Funct, State Key Lab Photon Technol Western China Energy,, Xian 710069, Peoples R China
[2] Xian Univ Technol, Sch Mech & Precis Instrument Engn, Xian 710048, Peoples R China
[3] Xian Univ Posts & Telecommun, Sch Sci, Xian 710121, Peoples R China
基金
中国国家自然科学基金;
关键词
Z-scheme heterostructure; SnSe2; SnSe heterostructure; photoelectrochemical-type photodetector; high stability; fast photodetection; WATER-SPLITTING PERFORMANCE; SEMICONDUCTORS; HETEROJUNCTION; PHOTOCATALYSTS; GENERATION; NANOSHEETS; EFFICIENT; LAYER;
D O I
10.1021/acsami.2c19762
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To mimic the natural photosynthesis system, a Z-scheme heterostructure is proposed as a viable and effective strategy for efficient solar energy utilization such as photocatalysis and photoelectrochemical (PEC) water splitting due to the high carrier separation efficiency, fast charge transport, strong redox, and wide light absorption. However, it remains a huge challenge to form a direct Z-scheme heterostructure due to the internal electric-field restriction and vital band-alignment at the interface. Herein, the van der Waals heterostructure based on the allotrope SnSe2 and SnSe is designed and synthesized by a two-step vapor phase deposition method to overcome the limitation in the formation of the Z-scheme heterostructure for the first time. The Z-scheme heterostructure of SnSe2/SnSe is confirmed by X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, PEC measurement, density functional theory calculations, and water splitting. Strikingly, the PEC photodetectors based on the Z-scheme heterostructure show a synergistic effect of superior stability from SnSe and fast photoresponse from SnSe2. As such, the SnSe2/SnSe Z-scheme heterostructure shows a good photodetection performance in the ultraviolet to visible wavelength range. Furthermore, the photodetector shows a faster response/recovery time of 13/14 ms, a higher photosensitivity of 529.13 mu A/W, and a higher detectivity of 4.94 x 109 Jones at 475 nm compared with those of single components. Furthermore, the photodetection stability of the SnSe2/SnSe is also greatly improved by a-thin-Al2O3-layer passivation. The results imply the promising rational design of a direct Z-scheme heterostructure with efficient charge transfer for high performance of optoelectronic devices.
引用
收藏
页码:6156 / 6168
页数:13
相关论文
共 61 条
[1]   Photocatalytic Z-Scheme Overall Water Splitting: Recent Advances in Theory and Experiments [J].
Abdul Nasir, Jamal ;
Munir, Akhtar ;
Ahmad, Naveed ;
ul Haq, Tanveer ;
Khan, Zaibunisa ;
Rehman, Ziaur .
ADVANCED MATERIALS, 2021, 33 (52)
[2]   PHOTOELECTROCHEMISTRY AND HETEROGENEOUS PHOTOCATALYSIS AT SEMICONDUCTORS [J].
BARD, AJ .
JOURNAL OF PHOTOCHEMISTRY, 1979, 10 (01) :59-75
[3]   Photocurrent generation with two-dimensional van der Waals semiconductors [J].
Buscema, Michele ;
Island, Joshua O. ;
Groenendijk, Dirk J. ;
Blanter, Sofya I. ;
Steele, Gary A. ;
van der Zant, Herre S. J. ;
Castellanos-Gomez, Andres .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (11) :3691-3718
[4]   Ultrasonically Exfoliated Nanocrystal-Based Z-Scheme SnSe2/WSe2 Heterojunction for a Superior Electrochemical Photoresponse [J].
Chauhan, Payal ;
Patel, Alkesh B. ;
Solanki, G. K. ;
Machhi, Hiren K. ;
Sumesh, C. K. ;
Soni, Saurabh S. ;
Patel, Vikas ;
Pathak, V. M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (27) :14729-14740
[5]   Recent Progress of Heterojunction Ultraviolet Photodetectors: Materials, Integrations, and Applications [J].
Chen, Jiaxin ;
Ouyang, Weixin ;
Yang, Wei ;
He, Jr-Hau ;
Fang, Xiaosheng .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (16)
[6]   Photoelectrochemical Self-Powered Solar-Blind Photodetectors Based on Ga2O3 Nanorod Array/Electrolyte Solid/Liquid Heterojunctions with a Large Separation Interface of Photogenerated Carriers [J].
Chen, Kai ;
Wang, Shunli ;
He, Chenran ;
Zhu, Huiwen ;
Zhao, Hailin ;
Guo, Daoyou ;
Chen, Zhengwei ;
Shen, Jingqin ;
Li, Peigang ;
Liu, Aiping ;
Li, Chaorong ;
Wu, Fengmin ;
Tang, Weihua .
ACS APPLIED NANO MATERIALS, 2019, 2 (10) :6169-6177
[7]  
Chen SH, 2020, ENVIRON SCI-NANO, V7, P753, DOI [10.1039/c9en01265f, 10.1039/C9EN01265F]
[8]   Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution [J].
Chen, Shiyou ;
Wang, Lin-Wang .
CHEMISTRY OF MATERIALS, 2012, 24 (18) :3659-3666
[9]  
Chen YW, 2011, NAT MATER, V10, P539, DOI [10.1038/NMAT3047, 10.1038/nmat3047]
[10]   Designing photosystem II: molecular engineering of photo-catalytic proteins [J].
Conlan, Brendon .
PHOTOSYNTHESIS RESEARCH, 2008, 98 (1-3) :687-700