Catalytic nanotechnology of X-ray photodynamics for cancer treatments

被引:12
作者
Zhang, Gang [1 ]
Guo, Meili [1 ]
Ma, Huizhen [2 ,3 ]
Wang, Junying [5 ]
Zhang, Xiao-Dong [2 ,3 ,4 ]
机构
[1] Tianjin Chengjian Univ, Sch Sci, Dept Phys, Tianjin 300384, Peoples R China
[2] Tianjin Univ, Sch Sci, Dept Phys, Tianjin 300350, Peoples R China
[3] Tianjin Univ, Sch Sci, Tianjin Key Lab Low Dimens Mat Phys & Preparing Te, Tianjin 300350, Peoples R China
[4] Tianjin Univ, Acad Med Engn & Translat Med, Tianjin Key Lab Brain Sci & Neural Engn, Tianjin 300072, Peoples R China
[5] Univ N Carolina, Dept Microbiol & Immunol, Chapel Hill, NC 27599 USA
基金
中国国家自然科学基金;
关键词
METAL-ORGANIC FRAMEWORKS; IMMUNE CHECKPOINT BLOCKADE; COATED GOLD NANOPARTICLES; CORE-SHELL NANOPARTICLES; RADIATION-THERAPY; DRUG-DELIVERY; BIOMEDICAL APPLICATIONS; HYBRID NANOPARTICLES; RENAL CLEARANCE; RECENT PROGRESS;
D O I
10.1039/d2bm01698b
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Photodynamic therapy (PDT) has been applied in cancer treatment because of its high selectivity, low toxicity, and non-invasiveness. However, the limited penetration depth of the light still hampers from reaching deep-seated tumors. Considering the penetrating ability of high-energy radiotherapy, X-ray-induced photodynamic therapy (X-PDT) has evolved as an alternative to overcome tissue blocks. As the basic principle of X-PDT, X-rays stimulate the nanoparticles to emit scintillating or persistent luminescence and further activate the photosensitizers to generate reactive oxygen species (ROS), which would cause a series of molecular and cellular damages, immune response, and eventually break down the tumor tissue. In recent years, catalytic nanosystems with unique structures and functions have emerged that can enhance X-PDT therapeutic effects via an immune response. The anti-cancer effect of X-PDT is closely related to the following factors: energy conversion efficiency of the material, the radiation dose of X-rays, quantum yield of the material, tumor resistance, and biocompatibility. Based on the latest research in this field and the classical theories of nanoscience, this paper systematically elucidates the current development of the X-PDT and related immunotherapy, and highlights its broad prospects in medical applications, discussing the connection between fundamental science and clinical translation.
引用
收藏
页码:1153 / 1181
页数:29
相关论文
共 301 条
[1]   Novel applications of diagnostic X-rays in activating a clinical photodynamic drug: Photofrin II through X-ray induced visible luminescence from "rare-earth" formulated particles [J].
Abliz, Erkinay ;
Collins, Joshua E. ;
Bell, Howard ;
Tata, Darrell B. .
JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2011, 19 (04) :521-530
[2]  
Agarwal A, 2004, INT J RADIAT ONCOL, V60, pS355
[3]   Codoping Enhanced Radioluminescence of Nanoscintillators for X-ray-Activated Synergistic Cancer Therapy and Prognosis Using Metabolomics [J].
Ahmad, Farooq ;
Wang, Xiaoyan ;
Jiang, Zhao ;
Yu, Xujiang ;
Liu, Xinyi ;
Mao, Rihua ;
Chen, Xiaoyuan ;
Li, Wanwan .
ACS NANO, 2019, 13 (09) :10419-10433
[4]   In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics [J].
Ai, Xiangzhao ;
Ho, Chris Jun Hui ;
Aw, Junxin ;
Attia, Amalina Binte Ebrahim ;
Mu, Jing ;
Wang, Yu ;
Wang, Xiaoyong ;
Wang, Yong ;
Liu, Xiaogang ;
Chen, Huabing ;
Gao, Mingyuan ;
Chen, Xiaoyuan ;
Yeow, Edwin K. L. ;
Liu, Gang ;
Olivo, Malini ;
Xing, Bengang .
NATURE COMMUNICATIONS, 2016, 7
[5]  
Ankeli G.O., 2020, ASIAN J RES REV PHYS, P30
[6]   Padeliporfi n vascular-targeted photodynamic therapy versus active surveillance in men with low-risk prostate cancer (CLIN1001 PCM301): an open-label, phase 3, randomised controlled trial [J].
Azzouzi, Abdel-Rahmene ;
Vincendeau, Sebastien ;
Barret, Eric ;
Cicco, Antony ;
Kleinclauss, Francois ;
van der Poel, Henk G. ;
Stief, Christian G. ;
Rassweiler, Jens ;
Salomon, Georg ;
Solsona, Eduardo ;
Alcaraz, Antonio ;
Tammela, Teuvo T. ;
Rosario, Derek J. ;
Gomez-Veiga, Francisco ;
Ahlgren, Goran ;
Benzaghou, Fawzi ;
Gaillac, Bertrand ;
Amzal, Billy ;
Debruyne, Frans M. J. ;
Fromont, Gaelle ;
Gratzke, Christian ;
Emberton, Mark .
LANCET ONCOLOGY, 2017, 18 (02) :181-191
[7]   Homology Modeling of Human γ-Butyric Acid Transporters and the Binding of Pro-Drugs 5-Aminolevulinic Acid and Methyl Aminolevulinic Acid Used in Photodynamic Therapy [J].
Baglo, Yan ;
Gabrielsen, Mari ;
Sylte, Ingebrigt ;
Gederaas, Odrun A. .
PLOS ONE, 2013, 8 (06)
[8]   Ultrasmall WS2 Quantum Dots with Visible Fluorescence for Protection of Cells and Animal Models from Radiation-Induced Damages [J].
Bai, Xueting ;
Wang, Junying ;
Mu, Xiaoyu ;
Yang, Jiang ;
Liu, Haixia ;
Xu, Fujuan ;
Jing, Yaqi ;
Liu, Lingfang ;
Xue, Xuhui ;
Dai, Haitao ;
Liu, Qiang ;
Sun, Yuan-Ming ;
Liu, Changlong ;
Zhang, Xiao-Dong .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2017, 3 (03) :460-470
[9]   Synthesis and surface characterization of nanosized Y2O3 : Eu and YAG : Eu luminescent phosphors which are useful in photodynamic therapy of cancer [J].
Bakhmetyev, Vadim V. ;
Minakova, Tamara S. ;
Mjakin, Sergey V. ;
Lebedev, Lev A. ;
Vlasenko, Anna B. ;
Nikandrova, Anna A. ;
Ekimova, Irina A. ;
Eremina, Nina S. ;
Sychov, Maxim M. ;
Ringuede, Armelle .
EUROPEAN JOURNAL OF NANOMEDICINE, 2016, 8 (04) :173-184
[10]  
Bardin V.A., 2022, NANOMATERIALS-BASEL, V12, P2079