Guided multi-scale refinement network for camouflaged object detection

被引:9
|
作者
Xu, Xiuqi [1 ]
Chen, Shuhan [1 ]
Lv, Xiao [2 ]
Wang, Jian [1 ]
Hu, Xuelong [1 ]
机构
[1] Yangzhou Univ, Sch Informat Engn, Yangzhou, Jiangsu, Peoples R China
[2] Chongqing Special Equipment Inspect & Res Inst, Chongqing, Peoples R China
关键词
Camouflaged object detection; Multi-scale global perception; Guided multi-scale refinement; SEMANTIC SEGMENTATION;
D O I
10.1007/s11042-022-13274-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The purpose of camouflaged object detection (COD) is to identify the hidden camouflaged object in an input image. Compared with other binary segmentation tasks like salient object detection, COD needs to deal with more complex scenes, such as low contrast, similar foreground and background. In this work, we proposed a novel guided multi-scale refinement network for COD. Specifically, we first design a global perception module for coarse localization by stacking multi-scale residual block on the top of the backbone in a recurrent manner. Then, we propose the guided multi-scale refinement module to refine such initial prediction progressively, which is combined with multi-level side-output features in a prediction-to-feature fusion strategy. By plugging into side-output features for multi-scale guidance, the missing object parts and false detection can be well remedied. Experimental results show that our proposed network can more accurately locate the camouflaged object and salient object with sharpened details than existing state-of-the-art approaches. In addition, our model is also very efficient and compact, which enables potential real-world applications.
引用
收藏
页码:5785 / 5801
页数:17
相关论文
共 50 条
  • [1] Guided multi-scale refinement network for camouflaged object detection
    Xiuqi Xu
    Shuhan Chen
    Xiao Lv
    Jian Wang
    Xuelong Hu
    Multimedia Tools and Applications, 2023, 82 : 5785 - 5801
  • [2] Boundary-guided multi-scale refinement network for camouflaged object detection
    Ye, Qian
    Li, Qingwu
    Huo, Guanying
    Liu, Yan
    Zhou, Yan
    VISUAL COMPUTER, 2025,
  • [3] Camouflaged Object Detection Based on Localization Guidance and Multi-scale Refinement
    Wang, Jinyang
    Wu, Wei
    MULTIMEDIA MODELING, MMM 2025, PT I, 2025, 15520 : 168 - 181
  • [4] Fast camouflaged object detection via multi-scale feature-enhanced network
    Bingqin Zhou
    Kun Yang
    Zhigang Gao
    Signal, Image and Video Processing, 2024, 18 : 3903 - 3914
  • [5] Fast camouflaged object detection via multi-scale feature-enhanced network
    Zhou, Bingqin
    Yang, Kun
    Gao, Zhigang
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (04) : 3903 - 3914
  • [6] Salient object detection network with multi-scale feature refinement and boundary feedback
    Zhang, Qing
    Li, Xiang
    IMAGE AND VISION COMPUTING, 2021, 116
  • [7] Boundary enhancement and refinement network for camouflaged object detection
    Xia, Chenxing
    Cao, Huizhen
    Gao, Xiuju
    Ge, Bin
    Li, Kuan-Ching
    Fang, Xianjin
    Zhang, Yan
    Liang, Xingzhu
    MACHINE VISION AND APPLICATIONS, 2024, 35 (05)
  • [8] Camouflaged Object Detection Based on Deep Learning with Attention-Guided Edge Detection and Multi-Scale Context Fusion
    Wen, Yalin
    Ke, Wei
    Sheng, Hao
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [9] Dynamic interactive refinement network for camouflaged object detection
    Sun, Yaoqi
    Ma, Lidong
    Shou, Peiyao
    Wen, Hongfa
    Gao, Yuhan
    Liu, Yixiu
    Yan, Chenggang
    Yin, Haibing
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (07): : 3433 - 3446
  • [10] Dynamic interactive refinement network for camouflaged object detection
    Yaoqi Sun
    Lidong Ma
    Peiyao Shou
    Hongfa Wen
    YuHan Gao
    Yixiu Liu
    Chenggang Yan
    Haibing Yin
    Neural Computing and Applications, 2024, 36 : 3433 - 3446