A practical guide for studying human behavior in the lab

被引:6
作者
Barbosa, Joao [1 ,2 ]
Stein, Heike [1 ,2 ]
Zorowitz, Sam [3 ]
Niv, Yael [3 ,4 ]
Summerfield, Christopher [5 ]
Soto-Faraco, Salvador [6 ,7 ]
Hyafil, Alexandre [8 ]
机构
[1] IDIBAPS, Brain Circuits & Behav Lab, Barcelona, Spain
[2] PSL Res Univ, Lab Neurosci Cognit & Computat, INSERM U960, Ecole Normale Super, F-75005 Paris, France
[3] Princeton Univ, Princeton Neurosci Inst, Princeton, NJ 08544 USA
[4] Princeton Univ, Dept Psychol, Princeton, NJ 08544 USA
[5] Univ Oxford, Dept Expt Psychol, Oxford, England
[6] Univ Pompeu Fabra Barcelona, Ctr Brain & Cognit, Multisensory Res Grp, Barcelona, Spain
[7] Inst Catalana Recerca & Estudis Avancats ICREA, Barcelona, Spain
[8] Ctr Recerca Matemat, Barcelona, Spain
关键词
Human behavioral experiments; Good practices; Open science; 10; rules; Study design; PSYCHOMETRIC FUNCTION; STATISTICAL POWER; NEUROSCIENCE; RELIABILITY; MODEL;
D O I
10.3758/s13428-022-01793-9
中图分类号
B841 [心理学研究方法];
学科分类号
040201 ;
摘要
In the last few decades, the field of neuroscience has witnessed major technological advances that have allowed researchers to measure and control neural activity with great detail. Yet, behavioral experiments in humans remain an essential approach to investigate the mysteries of the mind. Their relatively modest technological and economic requisites make behavioral research an attractive and accessible experimental avenue for neuroscientists with very diverse backgrounds. However, like any experimental enterprise, it has its own inherent challenges that may pose practical hurdles, especially to less experienced behavioral researchers. Here, we aim at providing a practical guide for a steady walk through the workflow of a typical behavioral experiment with human subjects. This primer concerns the design of an experimental protocol, research ethics, and subject care, as well as best practices for data collection, analysis, and sharing. The goal is to provide clear instructions for both beginners and experienced researchers from diverse backgrounds in planning behavioral experiments.
引用
收藏
页码:58 / 76
页数:19
相关论文
共 134 条
[1]   Estimating the reproducibility of psychological science [J].
Aarts, Alexander A. ;
Anderson, Joanna E. ;
Anderson, Christopher J. ;
Attridge, Peter R. ;
Attwood, Angela ;
Axt, Jordan ;
Babel, Molly ;
Bahnik, Stepan ;
Baranski, Erica ;
Barnett-Cowan, Michael ;
Bartmess, Elizabeth ;
Beer, Jennifer ;
Bell, Raoul ;
Bentley, Heather ;
Beyan, Leah ;
Binion, Grace ;
Borsboom, Denny ;
Bosch, Annick ;
Bosco, Frank A. ;
Bowman, Sara D. ;
Brandt, Mark J. ;
Braswell, Erin ;
Brohmer, Hilmar ;
Brown, Benjamin T. ;
Brown, Kristina ;
Bruening, Jovita ;
Calhoun-Sauls, Ann ;
Callahan, Shannon P. ;
Chagnon, Elizabeth ;
Chandler, Jesse ;
Chartier, Christopher R. ;
Cheung, Felix ;
Christopherson, Cody D. ;
Cillessen, Linda ;
Clay, Russ ;
Cleary, Hayley ;
Cloud, Mark D. ;
Cohn, Michael ;
Cohoon, Johanna ;
Columbus, Simon ;
Cordes, Andreas ;
Costantini, Giulio ;
Alvarez, Leslie D. Cramblet ;
Cremata, Ed ;
Crusius, Jan ;
DeCoster, Jamie ;
DeGaetano, Michelle A. ;
Della Penna, Nicolas ;
den Bezemer, Bobby ;
Deserno, Marie K. .
SCIENCE, 2015, 349 (6251)
[2]   Adaptable history biases in human perceptual decisions [J].
Abrahamyan, Arman ;
Silva, Laura Luz ;
Dakin, Steven C. ;
Carandini, Matteo ;
Gardner, Justin L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (25) :E3548-E3557
[3]  
Ahn Woo-Young, 2017, Comput Psychiatr, V1, P24, DOI 10.1162/CPSY_a_00002
[4]   Introduction [J].
不详 .
DIABETES CARE, 2015, 38 :S1-S2
[5]   Power Contours: Optimising Sample Size and Precision in Experimental Psychology and Human Neuroscience [J].
Baker, Daniel H. ;
Vilidaite, Greta ;
Lygo, Freya A. ;
Smith, Anika K. ;
Flack, Tessa R. ;
Gouws, Andre D. ;
Andrews, Timothy J. .
PSYCHOLOGICAL METHODS, 2021, 26 (03) :295-314
[6]   Publish your computer code: it is good enough [J].
Barnes, Nick .
NATURE, 2010, 467 (7317) :753-753
[7]  
Bauer B., 2020, Review of Best Practice Recommendation for Ensuring High Quality Data with Amazon's Mechanical Turk, DOI DOI 10.31234/OSF.IO/M78SF
[8]  
Bausell R.B., 2002, POWER ANAL EXPT RES, DOI DOI 10.1017/CBO9780511541933
[9]   Human-level saccade detection performance using deep neural networks [J].
Bellet, Marie E. ;
Bellet, Joachim ;
Nienborg, Hendrikje ;
Hafed, Ziad M. ;
Berens, Philipp .
JOURNAL OF NEUROPHYSIOLOGY, 2019, 121 (02) :646-661
[10]  
Benjamini Y, 2000, J EDUC BEHAV STAT, V25, P60, DOI 10.2307/1165312