Explainable Machine Learning based approach for the design of new refractory high entropy alloys

被引:15
作者
Swateelagna, Saswati [1 ]
Singh, Manish [1 ]
Rahul, M. R. [1 ]
机构
[1] Indian Inst Technol ISM Dhanbad, Dept Fuel Minerals & Met Engn, Dhanbad 826004, Jharkhand, India
关键词
Machine learning; RHEAs; LIME; SHAP; High entropy alloys;
D O I
10.1016/j.intermet.2024.108198
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The design and development of Refractory High Entropy Alloys can be expedited using Machine Learning (ML) approach. The current study uses a RHEA database to train the different Machine Learning models, namely, Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-nearest neighbor (KNN) and Artificial Neural Network (ANN). The trained models show an average testing accuracy of more than 80 %. Local interpretable model-agnostic explanations (LIME) and Shapley additive explanations (SHAP) are used to understand the impact of design parameters on ML phase prediction. New RHEAs are predicted by trained ML models and verified by experiments. The significant design parameters which affect the ML prediction of new alloys were established using LIME.
引用
收藏
页数:7
相关论文
共 23 条
[1]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[2]   An atomistic study of the newly-developed single-phase refractory high entropy alloy of TiZrVMo: Defect accumulation and evolution under tensile deformation [J].
Chen, Bingqing ;
Sun, Jiacheng ;
Zhuo, Longchao ;
Yan, Taiqi ;
Sun, Bingbing ;
Zhan, Mingrui .
MATERIALS LETTERS, 2023, 333
[3]   Remarkably high fracture toughness of HfNbTaTiZr refractory high-entropy alloy [J].
Fan, X. J. ;
Qu, R. T. ;
Zhang, Z. F. .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 123 :70-77
[4]   Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J].
Guo, Sheng ;
Ng, Chun ;
Lu, Jian ;
Liu, C. T. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (10)
[5]   How machine learning can help select capping layers to suppress perovskite degradation [J].
Hartono, Noor Titan Putri ;
Thapa, Janak ;
Tiihonen, Armi ;
Oviedo, Felipe ;
Batali, Clio ;
Yoo, Jason J. ;
Liu, Zhe ;
Li, Ruipeng ;
Fuertes Marron, David ;
Bawendi, Moungi G. ;
Buonassisi, Tonio ;
Sun, Shijing .
NATURE COMMUNICATIONS, 2020, 11 (01)
[6]   Machine learning-enabled identification of new medium to high entropy alloys with solid solution phases [J].
Jaiswal, Ujjawal Kumar ;
Krishna, Yegi Vamsi ;
Rahul, M. R. ;
Phanikumar, Gandham .
COMPUTATIONAL MATERIALS SCIENCE, 2021, 197
[7]   First-principles and machine learning predictions of elasticity in severely lattice-distorted high-entropy alloys with experimental validation [J].
Kim, George ;
Diao, Haoyan ;
Lee, Chanho ;
Samaei, A. T. ;
Tu Phan ;
de Jong, Maarten ;
An, Ke ;
Ma, Dong ;
Liaw, Peter K. ;
Chen, Wei .
ACTA MATERIALIA, 2019, 181 :124-138
[8]   Deep learning-based phase prediction of high-entropy alloys: Optimization, generation, and explanation [J].
Lee, Soo Young ;
Byeon, Seokyeong ;
Kim, Hyoung Seop ;
Jin, Hyungyu ;
Lee, Seungchul .
MATERIALS & DESIGN, 2021, 197
[9]  
Lundberg SM, 2017, ADV NEUR IN, V30
[10]   ICME approach to explore equiatomic and non-equiatomic single phase BCC refractory high entropy alloys [J].
Raturi, Abheepsit ;
Aditya, Jaya C. ;
Gurao, N. P. ;
Biswas, Krishanu .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 806 :587-595