HANKEL DETERMINANTS OF SHIFTED SEQUENCES OF BERNOULLI AND EULER NUMBERS

被引:0
作者
Dilcher, Karl [1 ]
Jiu, Lin [2 ]
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 4R2, Canada
[2] Duke Kunshan Univ, Zu Chongzhi Ctr Math & Computat Sci, Suzhou 215316, Jiangsu, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Bernoulli polynomial; Euler polynomial; Hankel determinant; orthogonal polynomial; shifted sequence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. Hankel determinants of sequences related to Bernoulli and Euler numbers have been studied before, and numerous identities are known. However, when a sequence is shifted by one unit, the situation often changes significantly. In this paper we use classical orthogonal polynomials and related methods to prove a general result concerning Hankel determinants for shifted sequences. We then apply this result to obtain new Hankel determinant evaluations for a total of 14 sequences related to Bernoulli and Euler numbers, one of which concerns Euler polynomials.
引用
收藏
页码:146 / 175
页数:30
相关论文
共 50 条
[31]   On a class of q-Bernoulli and q-Euler polynomials [J].
Nazim I Mahmudov .
Advances in Difference Equations, 2013
[32]   Extended Zeilberger's algorithm for identities on Bernoulli and Euler polynomials [J].
Chen, William Y. C. ;
Sun, Lisa H. .
JOURNAL OF NUMBER THEORY, 2009, 129 (09) :2111-2132
[33]   The Hankel transform of aerated sequences [J].
Bojicic, Radica ;
Petkovic, Marko D. ;
Barry, Paul .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (09) :685-699
[34]   Hankel Determinants of Zeta Values* [J].
Haynes, Alan ;
Zudilin, Wadim .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
[35]   Hankel Determinants of the Generalized Factorials [J].
Sheng-Liang Yang ;
Yan-Ni Dong .
Indian Journal of Pure and Applied Mathematics, 2018, 49 :217-225
[36]   HANKEL DETERMINANTS OF FACTORIAL FRACTIONS [J].
Chu, Wenchang .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 105 (01) :46-57
[37]   HANKEL DETERMINANTS OF THE GENERALIZED FACTORIALS [J].
Yang, Sheng-Liang ;
Dong, Yan-Ni .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (02) :217-225
[38]   Formulas for Bernoulli Numbers and Polynomials [J].
Abel, Ulrich ;
Alzer, Horst .
RESULTS IN MATHEMATICS, 2024, 79 (07)
[39]   Generalized harmonic numbers, Jacobi numbers and a Hankel determinant evaluation [J].
Chammam, Wathek .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2019, 30 (07) :581-593
[40]   Lacunary Recurrence Relations with Gaps of Length 8 for the Bernoulli and Euler Polynomials [J].
Mirzoev, K. A. ;
Safonova, T. A. .
MATHEMATICAL NOTES, 2024, 115 (1-2) :279-284