HANKEL DETERMINANTS OF SHIFTED SEQUENCES OF BERNOULLI AND EULER NUMBERS

被引:0
作者
Dilcher, Karl [1 ]
Jiu, Lin [2 ]
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 4R2, Canada
[2] Duke Kunshan Univ, Zu Chongzhi Ctr Math & Computat Sci, Suzhou 215316, Jiangsu, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Bernoulli polynomial; Euler polynomial; Hankel determinant; orthogonal polynomial; shifted sequence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. Hankel determinants of sequences related to Bernoulli and Euler numbers have been studied before, and numerous identities are known. However, when a sequence is shifted by one unit, the situation often changes significantly. In this paper we use classical orthogonal polynomials and related methods to prove a general result concerning Hankel determinants for shifted sequences. We then apply this result to obtain new Hankel determinant evaluations for a total of 14 sequences related to Bernoulli and Euler numbers, one of which concerns Euler polynomials.
引用
收藏
页码:146 / 175
页数:30
相关论文
共 50 条
[21]   Automaticity of the Hankel determinants of difference sequences of the Thue-Morse sequence [J].
Guo, Ying-Jun ;
Wen, Zhi-Xiong .
THEORETICAL COMPUTER SCIENCE, 2014, 552 :1-12
[22]   HIGHER-ORDER BERNOULLI, FROBENIUS-EULER AND EULER POLYNOMIALS [J].
Kim, Dae San ;
Kim, Taekyun ;
Seo, Jongjin .
JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 17 (01) :147-155
[23]   Hankel determinants, Pade approximations, and irrationality exponents for p-adic numbers [J].
Bugeaud, Yann ;
Yao, Jia-Yan .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (03) :929-946
[24]   Hankel determinants, Padé approximations, and irrationality exponents for p-adic numbers [J].
Yann Bugeaud ;
Jia-Yan Yao .
Annali di Matematica Pura ed Applicata (1923 -), 2017, 196 :929-946
[25]   A Note on Fibonacci & Lucas and Bernoulli & Euler Polynomials [J].
Pita Ruiz Velasco, Claudio de Jesus .
JOURNAL OF INTEGER SEQUENCES, 2012, 15 (02)
[26]   New identities involving Bernoulli and Euler polynomials [J].
Pan, H ;
Sun, ZW .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (01) :156-175
[27]   Relating Fibonacci Numbers to Bernoulli Numbers via Balancing Polynomials [J].
Frontczak, Robert .
JOURNAL OF INTEGER SEQUENCES, 2019, 22 (05)
[28]   Determinants of Hankel matrices [J].
Basor, EL ;
Chen, Y ;
Widom, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 179 (01) :214-234
[29]   Binomial sums about Bernoulli, Euler and Hermite polynomials [J].
Wang, Xiaoyuan ;
Chu, Wenchang .
DISCRETE MATHEMATICS LETTERS, 2021, 5 :5-11
[30]   A summation on Bernoulli numbers [J].
Chen, KW .
JOURNAL OF NUMBER THEORY, 2005, 111 (02) :372-391