bi-orthogonal system of functions;
generalized diffusion equation;
inverse problem;
Mittag-Leffler-type functions;
Riesz basis;
INVERSE SOURCE PROBLEM;
FRACTIONAL DIFFUSION;
UNIQUENESS;
FAMILY;
D O I:
10.1002/mma.9896
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
A diffusion equation involving integral convolution in time variable with arbitrary kernel and nonlocal boundary conditions is considered. The existence and uniqueness results for two inverse problems of determining source terms (space- and time-dependent sources) along with diffusion concentration from appropriate over-specified conditions are presented. A bi-orthogonal system of functions is used to have series representation of the solutions of the inverse problems. Several special cases such as standard diffusion, multi-term diffusion, and tempered diffusion equations are discussed, and some examples are provided.
机构:
Bulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str,Bl 8, Sofia 1113, BulgariaBulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str,Bl 8, Sofia 1113, Bulgaria
Bazhlekova, Emilia
;
Bazhlekov, Ivan
论文数: 0引用数: 0
h-index: 0
机构:
Bulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str,Bl 8, Sofia 1113, BulgariaBulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str,Bl 8, Sofia 1113, Bulgaria
机构:
Bulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str,Bl 8, Sofia 1113, BulgariaBulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str,Bl 8, Sofia 1113, Bulgaria
Bazhlekova, Emilia
;
Bazhlekov, Ivan
论文数: 0引用数: 0
h-index: 0
机构:
Bulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str,Bl 8, Sofia 1113, BulgariaBulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str,Bl 8, Sofia 1113, Bulgaria