Aspect-level sentiment analysis based on aspect-sentence graph convolution network

被引:11
|
作者
Shang, Wenqian [1 ]
Chai, Jiazhao [1 ]
Cao, Jianxiang [1 ]
Lei, Xia [1 ]
Zhu, Haibin [2 ]
Fan, Yongkai [1 ]
Ding, Weiping [3 ]
机构
[1] Commun Univ China, State Key Lab Media Convergence & Commun, Beijing 100020, Peoples R China
[2] Nipissing Univ, Dept Comp Sci & Math, North Bay, ON P1B 8H8, Canada
[3] Nantong Univ, Sch Informat Sci & Technol, Nantong 226019, Peoples R China
基金
中国国家自然科学基金;
关键词
Aspect-level sentiment analysis; Graph convolutional neural network; Aspect words; Syntactic dependency tree; Position coding;
D O I
10.1016/j.inffus.2023.102143
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aspect-level sentiment analysis aims to identify the sentiment polarity of aspect words in sentences. The existing research methods only focus on the grammatical dependencies between words, ignoring the semantic connections between aspect words and the dependency types between words, which limits the performance of the aspect-level sentiment analysis model. Therefore, this paper proposes an aspect-sentence Graph Convolutional Networks model (ASGCN) to perceive more comprehensive semantic information. Specifically, the model consists of sentence-focused GCN (SentenceGCN) and aspects-focused GCN (AspectsGCN) sub models. In the SentenceGCN model, this paper proposes a method to calculate the adjacency matrix (As) of syntactic dependency graph, which uses the position encoding mechanism and pays attention to the influence of different dependency types on semantics, so that SentenceGCN can capture the semantic information of the whole sentence more comprehensively. In the AspectsGCN model, this paper also proposes a method to calculate the adjacency matrix (Aa) of aspect words, which models the relational graph as fully connected and gives weight to the edges between aspect words according to the position, so that the AspectsGCN can pay attention to the semantic relation between different aspect words in the sentence. The proposed model outperforms all baseline models with 86.34 % accuracy and 79.96 F1 score, which indicates that there are more advantages in perceiving semantic information in ASGCN.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A novel network with multiple attention mechanisms for aspect-level sentiment analysis
    Wang, Xiaodi
    Tang, Mingwei
    Yang, Tian
    Wang, Zhen
    KNOWLEDGE-BASED SYSTEMS, 2021, 227
  • [22] EATN: An Efficient Adaptive Transfer Network for Aspect-Level Sentiment Analysis
    Zhang, Kai
    Liu, Qi
    Qian, Hao
    Xiang, Biao
    Cui, Qing
    Zhou, Jun
    Chen, Enhong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 377 - 389
  • [23] Multi-interaction Graph Convolutional Networks for Aspect-level Sentiment Analysis
    Wang Ruyan
    Tao Zhongyuan
    Zhao Rongjian
    Zhang Puning
    Yang Zhigang
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (03) : 1111 - 1118
  • [24] Aspect-level sentiment analysis with aspect-specific context position information
    Huang, Bo
    Guo, Ruyan
    Zhu, Yimin
    Fang, Zhijun
    Zeng, Guohui
    Liu, Jin
    Wang, Yini
    Fujita, Hamido
    Shi, Zhicai
    KNOWLEDGE-BASED SYSTEMS, 2022, 243
  • [25] Aspect-level Sentiment Analysis Based on Heterogeneous Spatial-Temporal Graph Convolutional Networks
    Jin, Mengqing
    Wang, Xun
    Xu, Changlin
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 370 - 374
  • [26] Convolutional attention neural network over graph structures for improving the performance of aspect-level sentiment analysis
    Phan, Huyen Trang
    Nguyen, Ngoc Thanh
    Hwang, Dosam
    INFORMATION SCIENCES, 2022, 589 : 416 - 439
  • [27] Incorporating Word Significance into Aspect-Level Sentiment Analysis
    Mokhosi, Refuoe
    Qin, ZhiGuang
    Liu, Qiao
    Shikali, Casper
    APPLIED SCIENCES-BASEL, 2019, 9 (17):
  • [28] A Unified Probabilistic Model for Aspect-Level Sentiment Analysis
    Stantic, Daniel
    Song, Fei
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2017, 2018, 10619 : 900 - 909
  • [29] SI-GCN: Modeling Specific-Aspect and Inter-Aspect Graph Convolutional Networks for Aspect-Level Sentiment Analysis
    Huang, Zexia
    Zhu, Yihong
    Hu, Jinsong
    Chen, Xiaoliang
    SYMMETRY-BASEL, 2024, 16 (12):
  • [30] Aspect-Level Sentiment Analysis Based on Bidirectional-GRU in SIoT
    Ali, Waqar
    Yang, Yuwang
    Qiu, Xiulin
    Ke, Yaqi
    Wang, Yinyin
    IEEE ACCESS, 2021, 9 : 69938 - 69950