A family of nonlocal degenerate operators: maximum principles and related properties

被引:0
|
作者
Schiera, Delia [1 ]
机构
[1] Univ Lisbon, Inst Super Tecn, Dept Matemat, Av Rovisco Pais, P-1049001 Lisbon, Portugal
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2024年 / 31卷 / 01期
关键词
Maximum and comparison principles; Fully nonlinear degenerate elliptic PDE; Nonlocal operators; Eigenvalue problem; VISCOSITY SOLUTIONS;
D O I
10.1007/s00030-023-00892-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of fully nonlinear nonlocal degenerate elliptic operators which are modeled on the fractional Laplacian and converge to the truncated Laplacians. We investigate the validity of (strong) maximum and minimum principles, and their relation with suitably defined principal eigenvalues. We also show a Hopf type Lemma, the existence of solutions for the corresponding Dirichlet problem, and representation formulas in some particular cases.
引用
收藏
页数:31
相关论文
共 20 条
  • [1] A family of nonlocal degenerate operators: maximum principles and related properties
    Delia Schiera
    Nonlinear Differential Equations and Applications NoDEA, 2024, 31
  • [2] Maximum principles and related problems for a class of nonlocal extremal operators
    Birindelli, Isabeau
    Galise, Giulio
    Schiera, Delia
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (05) : 2371 - 2412
  • [3] Maximum principles and related problems for a class of nonlocal extremal operators
    Isabeau Birindelli
    Giulio Galise
    Delia Schiera
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 2371 - 2412
  • [4] A DETOUR ON A CLASS OF NONLOCAL DEGENERATE OPERATORS
    Schiera, Delia
    BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 2023, 14 (01) : 95 - 115
  • [5] A family of degenerate elliptic operators: Maximum principle and its consequences
    Birindelli, Isabeau
    Galise, Giulio
    Ishii, Hitoshi
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (02): : 417 - 441
  • [6] Maximum principles for nonlocal parabolic Waldenfels operators
    Huang, Qiao
    Duan, Jinqiao
    Wu, Jiang-Lun
    BULLETIN OF MATHEMATICAL SCIENCES, 2019, 9 (03)
  • [7] SOME MAXIMUM PRINCIPLES FOR PARABOLIC MIXED LOCAL/NONLOCAL OPERATORS
    Dipierro, Serena
    Lippi, Edoardo proietti
    Valdinoci, Enrico
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (09) : 3923 - 3939
  • [8] Mixed local and nonlocal elliptic operators: regularity and maximum principles
    Biagi, Stefano
    Dipierro, Serena
    Valdinoci, Enrico
    Vecchi, Eugenio
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (03) : 585 - 629
  • [9] Principal curves to nonlocal Lane-Emden systems and related maximum principles
    Leite, Edir Junior Ferreira
    Montenegro, Marcos
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (04)
  • [10] Maximum Principle and generalized principal eigenvalue for degenerate elliptic operators
    Berestycki, Henri
    Dolcetta, Italo Capuzzo
    Porretta, Alessio
    Rossi, Luca
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (05): : 1276 - 1293