Integrating spatial and single-cell transcriptomics data using deep generative models with SpatialScope

被引:36
作者
Wan, Xiaomeng [1 ]
Xiao, Jiashun [2 ]
Tam, Sindy Sing Ting [3 ]
Cai, Mingxuan [4 ]
Sugimura, Ryohichi [5 ]
Wang, Yang [1 ,6 ,7 ]
Wan, Xiang [2 ]
Lin, Zhixiang [8 ]
Wu, Angela Ruohao [3 ,9 ,10 ,11 ]
Yang, Can [1 ,6 ,7 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Peoples R China
[2] Shenzhen Res Inst Big Data, Shenzhen 518172, Peoples R China
[3] Hong Kong Univ Sci & Technol, Div Life Sci, Kowloon, Hong Kong, Peoples R China
[4] City Univ Hong Kong, Dept Biostat, Hong Kong, Peoples R China
[5] Univ Hong Kong, Sch Biomed Sci, Li Ka Shing Fac Med, Hong Kong, Peoples R China
[6] Hong Kong Univ Sci & Technol, Guangdong Hong Kong Macao Joint Lab Data Driven Fl, Hong Kong, Peoples R China
[7] Hong Kong Univ Sci & Technol, Big Data Biointelligence Lab, Hong Kong, Peoples R China
[8] Chinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R China
[9] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Hong Kong, Peoples R China
[10] Hong Kong Univ Sci & Technol, Ctr Aging Sci, Hong Kong, Peoples R China
[11] Hong Kong Univ Sci & Technol, State Key Lab Mol Neurosci, Hong Kong, Peoples R China
关键词
ATLAS; EXPRESSION; CORTEX; NOGO;
D O I
10.1038/s41467-023-43629-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The rapid emergence of spatial transcriptomics (ST) technologies is revolutionizing our understanding of tissue spatial architecture and biology. Although current ST methods, whether based on next-generation sequencing (seq-based approaches) or fluorescence in situ hybridization (image-based approaches), offer valuable insights, they face limitations either in cellular resolution or transcriptome-wide profiling. To address these limitations, we present SpatialScope, a unified approach integrating scRNA-seq reference data and ST data using deep generative models. With innovation in model and algorithm designs, SpatialScope not only enhances seq-based ST data to achieve single-cell resolution, but also accurately infers transcriptome-wide expression levels for image-based ST data. We demonstrate SpatialScope's utility through simulation studies and real data analysis from both seq-based and image-based ST approaches. SpatialScope provides spatial characterization of tissue structures at transcriptome-wide single-cell resolution, facilitating downstream analysis, including detecting cellular communication through ligand-receptor interactions, localizing cellular subtypes, and identifying spatially differentially expressed genes. Spatial transcriptomics (ST) is transforming tissue analysis but has limitations. Here, authors introduce SpatialScope, an integrated approach combining scRNA-seq and ST data using deep generative models, enabling comprehensive spatial characterisation at transcriptome-wide single-cell resolution.
引用
收藏
页数:22
相关论文
共 50 条
[31]   Advancements in Single-Cell RNA Sequencing and Spatial Transcriptomics for Central Nervous System Disease [J].
Zhang, Yuan ;
Li, Teng ;
Wang, Guangtian ;
Ma, Yabin .
CELLULAR AND MOLECULAR NEUROBIOLOGY, 2024, 44 (01)
[32]   Evaluating measures of association for single-cell transcriptomics [J].
Skinnider, Michael A. ;
Squair, Jordan W. ;
Foster, Leonard J. .
NATURE METHODS, 2019, 16 (05) :381-+
[33]   Interpretation of T cell states from single-cell transcriptomics data using reference atlases [J].
Andreatta, Massimo ;
Corria-Osorio, Jesus ;
Muller, Soren ;
Cubas, Rafael ;
Coukos, George ;
Carmona, Santiago J. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[34]   Cell-type-specific analysis of alternative polyadenylation using single-cell transcriptomics data [J].
Shulman, Eldad David ;
Elkon, Ran .
NUCLEIC ACIDS RESEARCH, 2019, 47 (19) :10027-10039
[35]   Single-cell and spatial transcriptomics: Discovery of human placental development and disease [J].
Tang, Mi ;
Xiong, Liling ;
Cai, Jianghui ;
Fan, Li ;
Huang, Cheng ;
Zhang, Shimao ;
Jin, Ying ;
Luo, Er-dan ;
Xing, Shasha ;
Yang, Xiao .
FASEB BIOADVANCES, 2024, 6 (11) :503-518
[36]   Dissecting the effect of genetic variants on atherosclerosis: integrating bulk and single-cell transcriptomics [J].
Duregotti, Elisa ;
Mayr, Manuel .
EUROPEAN HEART JOURNAL, 2024, 46 (03) :323-325
[37]   Single-cell and spatial transcriptomics: Advances in heart development and disease applications [J].
Long, Xianglin ;
Yuan, Xin ;
Du, Jianlin .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 :2717-2731
[38]   Recovering single-cell expression profiles from spatial transcriptomics with scResolve [J].
Chen, Hao ;
Lee, Young Je ;
Ovando-Ricardez, Jose A. ;
Rosas, Lorena ;
Rojas, Mauricio ;
Mora, Ana L. ;
Bar-Joseph, Ziv ;
Lugo-Martinez, Jose .
CELL REPORTS METHODS, 2024, 4 (10)
[39]   Transfer learning of multicellular organization via single-cell and spatial transcriptomics [J].
Tan, Yecheng ;
Wang, Ai ;
Wang, Zezhou ;
Lin, Wei ;
Yan, Yan ;
Nie, Qing ;
Shi, Jifan .
PLOS COMPUTATIONAL BIOLOGY, 2025, 21 (04)
[40]   Uncover spatially informed variations for single-cell spatial transcriptomics with STew [J].
Guo, Nanxi ;
Vargas, Juan ;
Reynoso, Samantha ;
Fritz, Douglas ;
Krishna, Revanth ;
Wang, Chuangqi ;
Zhang, Fan .
BIOINFORMATICS ADVANCES, 2024, 4 (01)