Integrating spatial and single-cell transcriptomics data using deep generative models with SpatialScope

被引:38
作者
Wan, Xiaomeng [1 ]
Xiao, Jiashun [2 ]
Tam, Sindy Sing Ting [3 ]
Cai, Mingxuan [4 ]
Sugimura, Ryohichi [5 ]
Wang, Yang [1 ,6 ,7 ]
Wan, Xiang [2 ]
Lin, Zhixiang [8 ]
Wu, Angela Ruohao [3 ,9 ,10 ,11 ]
Yang, Can [1 ,6 ,7 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Peoples R China
[2] Shenzhen Res Inst Big Data, Shenzhen 518172, Peoples R China
[3] Hong Kong Univ Sci & Technol, Div Life Sci, Kowloon, Hong Kong, Peoples R China
[4] City Univ Hong Kong, Dept Biostat, Hong Kong, Peoples R China
[5] Univ Hong Kong, Sch Biomed Sci, Li Ka Shing Fac Med, Hong Kong, Peoples R China
[6] Hong Kong Univ Sci & Technol, Guangdong Hong Kong Macao Joint Lab Data Driven Fl, Hong Kong, Peoples R China
[7] Hong Kong Univ Sci & Technol, Big Data Biointelligence Lab, Hong Kong, Peoples R China
[8] Chinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R China
[9] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Hong Kong, Peoples R China
[10] Hong Kong Univ Sci & Technol, Ctr Aging Sci, Hong Kong, Peoples R China
[11] Hong Kong Univ Sci & Technol, State Key Lab Mol Neurosci, Hong Kong, Peoples R China
关键词
ATLAS; EXPRESSION; CORTEX; NOGO;
D O I
10.1038/s41467-023-43629-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The rapid emergence of spatial transcriptomics (ST) technologies is revolutionizing our understanding of tissue spatial architecture and biology. Although current ST methods, whether based on next-generation sequencing (seq-based approaches) or fluorescence in situ hybridization (image-based approaches), offer valuable insights, they face limitations either in cellular resolution or transcriptome-wide profiling. To address these limitations, we present SpatialScope, a unified approach integrating scRNA-seq reference data and ST data using deep generative models. With innovation in model and algorithm designs, SpatialScope not only enhances seq-based ST data to achieve single-cell resolution, but also accurately infers transcriptome-wide expression levels for image-based ST data. We demonstrate SpatialScope's utility through simulation studies and real data analysis from both seq-based and image-based ST approaches. SpatialScope provides spatial characterization of tissue structures at transcriptome-wide single-cell resolution, facilitating downstream analysis, including detecting cellular communication through ligand-receptor interactions, localizing cellular subtypes, and identifying spatially differentially expressed genes. Spatial transcriptomics (ST) is transforming tissue analysis but has limitations. Here, authors introduce SpatialScope, an integrated approach combining scRNA-seq and ST data using deep generative models, enabling comprehensive spatial characterisation at transcriptome-wide single-cell resolution.
引用
收藏
页数:22
相关论文
共 50 条
[21]   Spotiphy enables single-cell spatial whole transcriptomics across an entire section [J].
Yang, Jiyuan ;
Zheng, Ziqian ;
Jiao, Yun ;
Yu, Kaiwen ;
Bhatara, Sheetal ;
Yang, Xu ;
Natarajan, Sivaraman ;
Zhang, Jiahui ;
Pan, Qingfei ;
Easton, John ;
Yan, Koon-Kiu ;
Peng, Junmin ;
Liu, Kaibo ;
Yu, Jiyang .
NATURE METHODS, 2025, 22 (04) :724-736
[22]   Single-cell and spatial transcriptomics analysis of human adrenal aging [J].
Iwahashi, Norifusa ;
Umakoshi, Hironobu ;
Fujita, Masamichi ;
Fukumoto, Tazuru ;
Ogasawara, Tatsuki ;
Yokomoto-Umakoshi, Maki ;
Kaneko, Hiroki ;
Nakao, Hiroshi ;
Kawamura, Namiko ;
Uchida, Naohiro ;
Matsuda, Yayoi ;
Sakamoto, Ryuichi ;
Seki, Masahide ;
Suzuki, Yutaka ;
Nakatani, Kohta ;
Izumi, Yoshihiro ;
Bamba, Takeshi ;
Oda, Yoshinao ;
Ogawa, Yoshihiro .
MOLECULAR METABOLISM, 2024, 84
[23]   Opportunities and challenges in the application of single-cell and spatial transcriptomics in plants [J].
Chen, Ce ;
Ge, Yining ;
Lu, Lingli .
FRONTIERS IN PLANT SCIENCE, 2023, 14
[24]   Integration of Computational Analysis and Spatial Transcriptomics in Single-cell Studies [J].
Wang, Ran ;
Peng, Guangdun ;
Tam, Patrick P. L. ;
Jing, Naihe .
GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (01) :13-23
[25]   Advances in Microfluidic Single-Cell RNA Sequencing and Spatial Transcriptomics [J].
Sun, Yueqiu ;
Yu, Nianzuo ;
Zhang, Junhu ;
Yang, Bai .
MICROMACHINES, 2025, 16 (04)
[26]   Single-cell spatial transcriptomics in cardiovascular development, disease, and medicine [J].
Han, Songjie ;
Xu, Qianqian ;
Du, Yawen ;
Tang, Chuwei ;
Cui, Herong ;
Xia, Xiaofeng ;
Zheng, Rui ;
Sun, Yang ;
Shang, Hongcai .
GENES & DISEASES, 2024, 11 (06)
[27]   Unsupervised Deep Embedded Fusion Representation of Single-Cell Transcriptomics [J].
Cheng, Yue ;
Su, Yanchi ;
Yu, Zhuohan ;
Liang, Yanchun ;
Wong, Ka-Chun ;
Li, Xiangtao .
THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, :5036-5044
[28]   A deep learning method for classification of HNSCC and HPV patients using single-cell transcriptomics [J].
Jarwal, Akanksha ;
Dhall, Anjali ;
Arora, Akanksha ;
Patiyal, Sumeet ;
Srivastava, Aman ;
Raghava, Gajendra P. S. .
FRONTIERS IN MOLECULAR BIOSCIENCES, 2024, 11
[29]   Integrating bulk, single-cell, and spatial transcriptomics to identify and functionally validate novel targets to enhance immunotherapy in NSCLC [J].
Cao, Kui ;
Wei, Shenshui ;
Ma, Tianjiao ;
Yang, Xinxin ;
Wang, Yuning ;
He, Xiangrong ;
Lu, Mengdi ;
Bai, Yuwen ;
Qi, Cuicui ;
Zhang, Luquan ;
Li, Lijuan ;
Meng, Hongxue ;
Ma, Jianqun ;
Zhu, Jinhong .
NPJ PRECISION ONCOLOGY, 2025, 9 (01)
[30]   Advancements in Single-Cell RNA Sequencing and Spatial Transcriptomics for Central Nervous System Disease [J].
Zhang, Yuan ;
Li, Teng ;
Wang, Guangtian ;
Ma, Yabin .
CELLULAR AND MOLECULAR NEUROBIOLOGY, 2024, 44 (01)