A low-rank and sparse enhanced Tucker decomposition approach for tensor completion

被引:7
作者
Pan, Chenjian [1 ,2 ]
Ling, Chen [2 ]
He, Hongjin [1 ]
Qi, Liqun [3 ]
Xu, Yanwei [4 ]
机构
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310018, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[4] 2012 Labs Huawei Tech Investment Co Ltd, Future Network Theory Lab, Shatin, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Tensor completion; Tucker decomposition; Nuclear norm; Internet traffic data; Image inpainting; THRESHOLDING ALGORITHM; MATRIX FACTORIZATION; RECOVERY;
D O I
10.1016/j.amc.2023.128432
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a unified low-rank and sparse enhanced Tucker decomposition model for tensor completion. Our model possesses a sparse regularization term to promote a sparse core of the Tucker decomposition, which is beneficial for tensor data compression. Moreover, we enforce low-rank regularization terms on factor matrices of the Tucker decomposition for inducing the low-rankness of the tensor with a cheap computational cost. Numerically, we propose a customized splitting method with easy subproblems to solve the underlying model. It is remarkable that our model is able to deal with different types of real-world data sets, since it exploits the potential periodicity and inherent correlation properties appeared in tensors. A series of computational experiments on real-world data sets, including internet traffic data sets and color images, demonstrate that our model performs better than many existing state-of-the-art matricization and tensorization approaches in terms of achieving higher recovery accuracy.
引用
收藏
页数:15
相关论文
共 43 条
[1]   Scalable tensor factorizations for incomplete data [J].
Acar, Evrim ;
Dunlavy, Daniel M. ;
Kolda, Tamara G. ;
Morup, Morten .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2011, 106 (01) :41-56
[2]  
Ashraphijuo M, 2017, IEEE INT SYMP INFO, P531, DOI 10.1109/ISIT.2017.8006584
[3]   A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION [J].
Cai, Jian-Feng ;
Candes, Emmanuel J. ;
Shen, Zuowei .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) :1956-1982
[4]   Robust Principal Component Analysis? [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Ma, Yi ;
Wright, John .
JOURNAL OF THE ACM, 2011, 58 (03)
[5]   Exact Matrix Completion via Convex Optimization [J].
Candes, Emmanuel J. ;
Recht, Benjamin .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (06) :717-772
[6]   Nonnegative Tensor Completion via Low-Rank Tucker Decomposition: Model and Algorithm [J].
Chen, Bilian ;
Sun, Ting ;
Zhou, Zhehao ;
Zeng, Yifeng ;
Cao, Langcai .
IEEE ACCESS, 2019, 7 :95903-95914
[7]   Proximal Splitting Methods in Signal Processing [J].
Combettes, Patrick L. ;
Pesquet, Jean-Christophe .
FIXED-POINT ALGORITHMS FOR INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2011, 49 :185-+
[8]   SYMMETRIC TENSORS AND SYMMETRIC TENSOR RANK [J].
Comon, Pierre ;
Golub, Gene ;
Lim, Lek-Heng ;
Mourrain, Bernard .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) :1254-1279
[9]   A multilinear singular value decomposition [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1253-1278
[10]  
Filipovic M, 2015, MULTIDIM SYST SIGN P, V26, P677, DOI 10.1007/s11045-013-0269-9