Compactness of harmonic maps of surfaces with regular nodes

被引:0
作者
Park, Woongbae [1 ]
机构
[1] Univ Pittsburgh, Dept Math, 301 Thackeray Hall, Pittsburgh, PA 15260 USA
关键词
Harmonic maps; Deligne-Mumford moduli space; Compactness; Bubble; Regular node;
D O I
10.1007/s10455-023-09926-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we formulate and prove a general compactness theorem for harmonic maps of Riemann surfaces using Deligne-Mumford moduli space and families of curves. The main theorem shows that given a sequence of harmonic maps over a sequence of complex curves, there is a family of curves and a subsequence such that both the domains and the maps converge with the singular set consisting of only "non-regular" nodes. This provides a sufficient condition for a neck having zero energy and zero length. As a corollary, the following known fact can be proved: If all domains are diffeomorphic to S-2, both energy identity and zero distance bubbling hold.
引用
收藏
页数:25
相关论文
共 11 条
  • [1] Arbarello E, 2011, GRUNDLEHR MATH WISS, V268, P1, DOI 10.1007/978-3-540-69392-5_1
  • [2] Compactification of moduli space of harmonic mappings
    Chen, JY
    Tian, G
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1999, 74 (02) : 201 - 237
  • [3] The Refined Analysis on the Convergence Behavior of Harmonic Map Sequence from Cylinders
    Chen, Li
    Li, Yuxiang
    Wang, Youde
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2012, 22 (04) : 942 - 963
  • [4] ANOTHER REPORT ON HARMONIC MAPS
    EELLS, J
    LEMAIRE, L
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 : 385 - 524
  • [5] Eells J., 1978, B LOND MATH SOC, V10, P1, DOI [10.1112/blms/10.1.1, DOI 10.1112/BLMS/10.1.1]
  • [6] Lin F., 2008, The Analysis of Harmonic Maps and Their Heat Flows, DOI [DOI 10.1142/6679, 10.1142/9789812779533, DOI 10.1142/9789812779533]
  • [7] Lin FH, 1998, CALC VAR PARTIAL DIF, V6, P369
  • [8] Parker TH, 1996, J DIFFER GEOM, V44, P595
  • [9] Robbin JW, 2006, J EUR MATH SOC, V8, P611
  • [10] THE EXISTENCE OF MINIMAL IMMERSIONS OF 2-SPHERES
    SACKS, J
    UHLENBECK, K
    [J]. ANNALS OF MATHEMATICS, 1981, 113 (01) : 1 - 24