AFNet Algorithm for Automatic Amniotic Fluid Segmentation from Fetal MRI

被引:0
作者
Costanzo, Alejo [1 ,2 ,3 ]
Ertl-Wagner, Birgit [4 ,5 ]
Sussman, Dafna [1 ,2 ,3 ,6 ]
机构
[1] Toronto Metropolitan Univ, Fac Engn & Architectural Sci, Dept Elect Comp & Biomed Engn, Toronto, ON M5B 2K3, Canada
[2] Toronto Metropolitan Univ, Inst Biomed Engn, Sci & Technol iBEST, Toronto, ON M5B 1T8, Canada
[3] St Michaels Hosp, Toronto, ON M5B 1T8, Canada
[4] Hosp Sick Children, Dept Diagnost Imaging, Toronto, ON M5G 1X8, Canada
[5] Univ Toronto, Fac Med, Dept Med Imaging, Toronto, ON M5T 1W7, Canada
[6] Univ Toronto, Fac Med, Dept Obstet & Gynecol, Toronto, ON M5G 1E2, Canada
来源
BIOENGINEERING-BASEL | 2023年 / 10卷 / 07期
基金
加拿大自然科学与工程研究理事会;
关键词
medical image segmentation; amniotic fluid; AFNet; fetal MRI; Magnetic Resonance Imaging; CNN; deep learning;
D O I
10.3390/bioengineering10070783
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Amniotic Fluid Volume (AFV) is a crucial fetal biomarker when diagnosing specific fetal abnormalities. This study proposes a novel Convolutional Neural Network (CNN) model, AFNet, for segmenting amniotic fluid (AF) to facilitate clinical AFV evaluation. AFNet was trained and tested on a manually segmented and radiologist-validated AF dataset. AFNet outperforms ResUNet++ by using efficient feature mapping in the attention block and transposing convolutions in the decoder. Our experimental results show that AFNet achieved a mean Intersection over Union (mIoU) of 93.38% on our dataset, thereby outperforming other state-of-the-art models. While AFNet achieves performance scores similar to those of the UNet++ model, it does so while utilizing merely less than half the number of parameters. By creating a detailed AF dataset with an improved CNN architecture, we enable the quantification of AFV in clinical practice, which can aid in diagnosing AF disorders during gestation.
引用
收藏
页数:13
相关论文
共 44 条
  • [1] The association between pregnancies complicated with isolated polyhydramnios or oligohydramnios and offspring long-term gastrointestinal morbidity
    Amitai, Aviv
    Wainstock, Tamar
    Sheiner, Eyal
    Walfisch, Asnat
    Landau, Daniella
    Pariente, Gali
    [J]. ARCHIVES OF GYNECOLOGY AND OBSTETRICS, 2019, 300 (06) : 1607 - 1612
  • [2] Amniotic fluid water dynamics
    Beall, M. H.
    van den Wijngaard, J. P. H. M.
    van Gemert, M. J. C.
    Ross, M. G.
    [J]. PLACENTA, 2007, 28 (8-9) : 816 - 823
  • [3] WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians
    Bernal, Jorge
    Javier Sanchez, F.
    Fernandez-Esparrach, Gloria
    Gil, Debora
    Rodriguez, Cristina
    Vilarino, Fernando
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 43 : 99 - 111
  • [4] Deep learning-based segmentation of breast masses in dedicated breast CT imaging: Radiomic feature stability between radiologists and artificial intelligence
    Caballo, Marco
    Pangallo, Domenico R.
    Mann, Ritse M.
    Sechopoulos, Ioannis
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 118
  • [5] Chen LC, 2017, Arxiv, DOI [arXiv:1706.05587, 10.48550/arXiv.1706.05587]
  • [6] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
    Chen, Liang-Chieh
    Zhu, Yukun
    Papandreou, George
    Schroff, Florian
    Adam, Hartwig
    [J]. COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 833 - 851
  • [7] Spatial-channel relation learning for brain tumor segmentation
    Cheng, Guohua
    Ji, Hongli
    Ding, Zhongxiang
    [J]. MEDICAL PHYSICS, 2020, 47 (10) : 4885 - 4894
  • [8] Cunningham Gray.F., 2018, Williams Obstetrics
  • [9] Hydramnios: Anomaly prevalence and sonographic detection
    Dashe, JS
    McIntire, DD
    Ramus, RM
    Santos-Ramos, R
    Twickler, DM
    [J]. OBSTETRICS AND GYNECOLOGY, 2002, 100 (01) : 134 - 139
  • [10] Dumoulin V, 2018, Arxiv, DOI [arXiv:1603.07285, DOI 10.48550/ARXIV.1603.07285]