Origin of the elements

被引:67
作者
Arcones, Almudena [1 ,2 ]
Thielemann, Friedrich-Karl [2 ,3 ]
机构
[1] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany
[2] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany
[3] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
关键词
Element abundance; Big Bang nucleosynthesis; Stellar evolution; Core collapse; Supernovae; Compact binary mergers; Galactic evolution; GAMMA-RAY BURST; NEUTRINO-DRIVEN WINDS; ACCRETION-INDUCED COLLAPSE; R-PROCESS NUCLEOSYNTHESIS; S-PROCESS NUCLEOSYNTHESIS; BIG-BANG NUCLEOSYNTHESIS; ROTATING MASSIVE STARS; PRIMORDIAL HELIUM ABUNDANCE; PRE-SUPERNOVA EVOLUTION; NUCLEAR-REACTION RATES;
D O I
10.1007/s00159-022-00146-x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
What is the origin of the oxygen we breathe, the hydrogen and oxygen (in form of water H2O) in rivers and oceans, the carbon in all organic compounds, the silicon in electronic hardware, the calcium in our bones, the iron in steel, silver and gold in jewels, the rare earths utilized, e.g. in magnets or lasers, lead or lithium in batteries, and also of naturally occurring uranium and plutonium? The answer lies in the skies. Astrophysical environments from the Big Bang to stars and stellar explosions are the cauldrons where all these elements are made. The papers by Burbidge (Rev Mod Phys 29:547-650, 1957) and Cameron (Publ Astron Soc Pac 69:201, 1957), as well as precursors by Bethe, von Weizsacker, Hoyle, Gamow, and Suess and Urey provided a very basic understanding of the nucleosynthesis processes responsible for their production, combined with nuclear physics input and required environment conditions such as temperature, density and the overall neutron/proton ratio in seed material. Since then a steady stream of nuclear experiments and nuclear structure theory, astrophysical models of the early universe as well as stars and stellar explosions in single and binary stellar systems has led to a deeper understanding. This involved improvements in stellar models, the composition of stellar wind ejecta, the mechanism of core-collapse supernovae as final fate of massive stars, and the transition (as a function of initial stellar mass) from core-collapse supernovae to hypernovae and long duration gamma-ray bursts (accompanied by the formation of a black hole) in case of single star progenitors. Binary stellar systems give rise to nova explosions, X-ray bursts, type Ia supernovae, neutron star, and neutron star-black hole mergers. All of these events (possibly with the exception of X-ray bursts) eject material with an abundance composition unique to the specific event and lead over time to the evolution of elemental (and isotopic) abundances in the galactic gas and their imprint on the next generation of stars. In the present review, we want to give a modern overview of the nucleosynthesis processes involved, their astrophysical sites, and their impact on the evolution of galaxies.
引用
收藏
页数:109
相关论文
共 457 条
[1]  
Lund KA, 2022, Arxiv, DOI arXiv:2208.06373
[2]  
Abbott A, 2017, NATURE, V551, P425, DOI 10.1038/551425a
[3]   JIN Abase-A Database for Chemical Abundances of Metal-poor Stars [J].
Abohalima, Abdu ;
Frebel, Anna .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2018, 238 (02)
[4]   Solar fusion cross sections. II. The pp chain and CNO cycles [J].
Adelberger, E. G. ;
Garcia, A. ;
Robertson, R. G. Hamish ;
Snover, K. A. ;
Balantekin, A. B. ;
Heeger, K. ;
Ramsey-Musolf, M. J. ;
Bemmerer, D. ;
Junghans, A. ;
Bertulani, C. A. ;
Chen, J. -W. ;
Costantini, H. ;
Prati, P. ;
Couder, M. ;
Uberseder, E. ;
Wiescher, M. ;
Cyburt, R. ;
Davids, B. ;
Freedman, S. J. ;
Gai, M. ;
Gazit, D. ;
Gialanella, L. ;
Imbriani, G. ;
Greife, U. ;
Hass, M. ;
Haxton, W. C. ;
Itahashi, T. ;
Kubodera, K. ;
Langanke, K. ;
Leitner, D. ;
Leitner, M. ;
Vetter, P. ;
Winslow, L. ;
Marcucci, L. E. ;
Motobayashi, T. ;
Mukhamedzhanov, A. ;
Tribble, R. E. ;
Nollett, Kenneth M. ;
Nunes, F. M. ;
Park, T. -S. ;
Parker, P. D. ;
Schiavilla, R. ;
Simpson, E. C. ;
Spitaleri, C. ;
Strieder, F. ;
Trautvetter, H. -P. ;
Suemmerer, K. ;
Typel, S. .
REVIEWS OF MODERN PHYSICS, 2011, 83 (01) :195-245
[5]   Probing the interior physics of stars through asteroseismology [J].
Aerts, C. .
REVIEWS OF MODERN PHYSICS, 2021, 93 (01)
[6]   Planck 2018 results: VI. Cosmological parameters [J].
Aghanim, N. ;
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Battye, R. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Challinor, A. ;
Chiang, H. C. ;
Chluba, J. ;
Colombo, L. P. L. ;
Combet, C. ;
Contreras, D. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[7]   Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun [J].
Agostini, M. ;
Altenmueller, K. ;
Appel, S. ;
Atroshchenko, V ;
Bagdasarian, Z. ;
Basilico, D. ;
Bellini, G. ;
Benziger, J. ;
Biondi, R. ;
Bravo, D. ;
Caccianiga, B. ;
Calaprice, F. ;
Caminata, A. ;
Cavalcante, P. ;
Chepurnov, A. ;
D'Angelo, D. ;
Davini, S. ;
Derbin, A. ;
Di Giacinto, A. ;
Di Marcello, V ;
Ding, X. F. ;
Di Ludovico, A. ;
Di Noto, L. ;
Drachnev, I ;
Formozov, A. ;
Franco, D. ;
Galbiati, C. ;
Ghiano, C. ;
Giammarchi, M. ;
Goretti, A. ;
Goettel, A. S. ;
Gromov, M. ;
Guffanti, D. ;
Ianni, Aldo ;
Ianni, Andrea ;
Jany, A. ;
Jeschke, D. ;
Kobychev, V ;
Korga, G. ;
Kumaran, S. ;
Laubenstein, M. ;
Litvinovich, E. ;
Lombardi, P. ;
Lomskaya, I ;
Ludhova, L. ;
Lukyanchenko, G. ;
Lukyanchenko, L. ;
Machulin, I ;
Martyn, J. ;
Meroni, E. .
NATURE, 2020, 587 (7835) :577-+
[8]   The status and future of direct nuclear reaction measurements for stellar burning [J].
Aliotta, M. ;
Buompane, R. ;
Couder, M. ;
Couture, A. ;
deBoer, R. J. ;
Formicola, A. ;
Gialanella, L. ;
Glorius, J. ;
Imbriani, G. ;
Junker, M. ;
Langer, C. ;
Lennarz, A. ;
Litvinov, Yu A. ;
Liu, W-P ;
Lugaro, M. ;
Matei, C. ;
Meisel, Z. ;
Piersanti, L. ;
Reifarth, R. ;
Robertson, D. ;
Simon, A. ;
Straniero, O. ;
Tumino, A. ;
Wiescher, M. ;
Xu, Y. .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2022, 49 (01)
[9]   Magnetorotational core collapse of possible GRB progenitors II. Formation of protomagnetars and collapsars [J].
Aloy, M. A. ;
Obergaulinger, M. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 500 (04) :4365-4397
[10]   Radiative neutron capture on a proton at big-bang nucleosynthesis energies [J].
Ando, S. ;
Cyburt, R. H. ;
Hong, S. W. ;
Hyun, C. H. .
PHYSICAL REVIEW C, 2006, 74 (02)