Artificial intelligence in pharmacology research and practice

被引:28
作者
van der Lee, Maaike [1 ]
Swen, Jesse J. [1 ]
机构
[1] Leiden Univ Med Ctr, Dept Clin Pharm & Toxicol, Leiden, Netherlands
来源
CTS-CLINICAL AND TRANSLATIONAL SCIENCE | 2023年 / 16卷 / 01期
关键词
D O I
10.1111/cts.13431
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
In recent years, the use of artificial intelligence (AI) in health care has risen steadily, including a wide range of applications in the field of pharmacology. AI is now used throughout the entire continuum of pharmacology research and clinical practice and from early drug discovery to real-world datamining. The types of AI models used range from unsupervised clustering of drugs or patients aimed at identifying potential drug compounds or suitable patient populations, to supervised machine learning approaches to improve therapeutic drug monitoring. Additionally, natural language processing is increasingly used to mine electronic health records to obtain real-world data. In this mini-review, we discuss the basics of AI followed by an outline of its application in pharmacology research and clinical practice.
引用
收藏
页码:31 / 36
页数:6
相关论文
共 25 条
  • [1] Explainable artificial intelligence in high-throughput drug repositioning for subgroup stratifications with interventionable potential
    Al-Taie, Zainab
    Liu, Danlu
    Mitchem, Jonathan B.
    Papageorgiou, Christos
    Kaifi, Jussuf T.
    Warren, Wesley C.
    Shyu, Chi-Ren
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2021, 118
  • [2] A Machine Learning Approach to Predict Interdose Vancomycin Exposure
    Bououda, Mehdi
    Uster, David W.
    Sidorov, Egor
    Labriffe, Marc
    Marquet, Pierre
    Wicha, Sebastian G.
    Woillard, Jean-Baptiste
    [J]. PHARMACEUTICAL RESEARCH, 2022, 39 (04) : 721 - 731
  • [3] Artificial intelligence framework identifies candidate targets for drug repurposing in Alzheimer's disease
    Fang, Jiansong
    Zhang, Pengyue
    Wang, Quan
    Chiang, Chien-Wei
    Zhou, Yadi
    Hou, Yuan
    Xu, Jielin
    Chen, Rui
    Zhang, Bin
    Lewis, Stephen J.
    Leverenz, James B.
    Pieper, Andrew A.
    Li, Bingshan
    Li, Lang
    Cummings, Jeffrey
    Cheng, Feixiong
    [J]. ALZHEIMERS RESEARCH & THERAPY, 2022, 14 (01)
  • [4] Prediction of clinically relevant drug-induced liver injury from structure using machine learning
    Hammann, Felix
    Schoning, Verena
    Drewe, Jurgen
    [J]. JOURNAL OF APPLIED TOXICOLOGY, 2019, 39 (03) : 412 - 419
  • [5] Artificial Intelligence for Clinical Trial Design
    Harrer, Stefan
    Shah, Pratik
    Antony, Bhavna
    Hu, Jianying
    [J]. TRENDS IN PHARMACOLOGICAL SCIENCES, 2019, 40 (08) : 577 - 591
  • [6] Systematic integration of biomedical knowledge prioritizes drugs for repurposing
    Himmelstein, Daniel Scott
    Lizee, Antoine
    Hessler, Christine
    Brueggeman, Leo
    Chen, Sabrina L.
    Hadley, Dexter
    Green, Ari
    Khankhanian, Pouya
    Baranzini, Sergio E.
    [J]. ELIFE, 2017, 6
  • [7] Kim H, 2020, BIOTECHNOL BIOPROC E, V25, P895
  • [8] The case for AI-driven cancer clinical trials - The efficacy arm in silico
    Kolla, Likhitha
    Gruber, Fred K.
    Khalid, Omar
    Hill, Colin
    Parikh, Ravi B.
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2021, 1876 (01):
  • [9] Machine learning algorithms to estimate everolimus exposure trained on simulated and patient pharmacokinetic profiles
    Labriffe, Marc
    Woillard, Jean-Baptiste
    Debord, Jean
    Marquet, Pierre
    [J]. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2022, 11 (08): : 1018 - 1028
  • [10] Success stories of AI in drug discovery-where do things stand?
    Mak, Kit-Kay
    Balijepalli, Madhu Katyayani
    Pichika, Mallikarjuna Rao
    [J]. EXPERT OPINION ON DRUG DISCOVERY, 2022, 17 (01) : 79 - 92