Artificial intelligence in pharmacology research and practice

被引:35
作者
van der Lee, Maaike [1 ]
Swen, Jesse J. [1 ]
机构
[1] Leiden Univ Med Ctr, Dept Clin Pharm & Toxicol, Leiden, Netherlands
来源
CTS-CLINICAL AND TRANSLATIONAL SCIENCE | 2023年 / 16卷 / 01期
关键词
D O I
10.1111/cts.13431
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
In recent years, the use of artificial intelligence (AI) in health care has risen steadily, including a wide range of applications in the field of pharmacology. AI is now used throughout the entire continuum of pharmacology research and clinical practice and from early drug discovery to real-world datamining. The types of AI models used range from unsupervised clustering of drugs or patients aimed at identifying potential drug compounds or suitable patient populations, to supervised machine learning approaches to improve therapeutic drug monitoring. Additionally, natural language processing is increasingly used to mine electronic health records to obtain real-world data. In this mini-review, we discuss the basics of AI followed by an outline of its application in pharmacology research and clinical practice.
引用
收藏
页码:31 / 36
页数:6
相关论文
共 25 条
[1]   Explainable artificial intelligence in high-throughput drug repositioning for subgroup stratifications with interventionable potential [J].
Al-Taie, Zainab ;
Liu, Danlu ;
Mitchem, Jonathan B. ;
Papageorgiou, Christos ;
Kaifi, Jussuf T. ;
Warren, Wesley C. ;
Shyu, Chi-Ren .
JOURNAL OF BIOMEDICAL INFORMATICS, 2021, 118
[2]   A Machine Learning Approach to Predict Interdose Vancomycin Exposure [J].
Bououda, Mehdi ;
Uster, David W. ;
Sidorov, Egor ;
Labriffe, Marc ;
Marquet, Pierre ;
Wicha, Sebastian G. ;
Woillard, Jean-Baptiste .
PHARMACEUTICAL RESEARCH, 2022, 39 (04) :721-731
[3]   Artificial intelligence framework identifies candidate targets for drug repurposing in Alzheimer's disease [J].
Fang, Jiansong ;
Zhang, Pengyue ;
Wang, Quan ;
Chiang, Chien-Wei ;
Zhou, Yadi ;
Hou, Yuan ;
Xu, Jielin ;
Chen, Rui ;
Zhang, Bin ;
Lewis, Stephen J. ;
Leverenz, James B. ;
Pieper, Andrew A. ;
Li, Bingshan ;
Li, Lang ;
Cummings, Jeffrey ;
Cheng, Feixiong .
ALZHEIMERS RESEARCH & THERAPY, 2022, 14 (01)
[4]   Prediction of clinically relevant drug-induced liver injury from structure using machine learning [J].
Hammann, Felix ;
Schoning, Verena ;
Drewe, Jurgen .
JOURNAL OF APPLIED TOXICOLOGY, 2019, 39 (03) :412-419
[5]   Artificial Intelligence for Clinical Trial Design [J].
Harrer, Stefan ;
Shah, Pratik ;
Antony, Bhavna ;
Hu, Jianying .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2019, 40 (08) :577-591
[6]   Systematic integration of biomedical knowledge prioritizes drugs for repurposing [J].
Himmelstein, Daniel Scott ;
Lizee, Antoine ;
Hessler, Christine ;
Brueggeman, Leo ;
Chen, Sabrina L. ;
Hadley, Dexter ;
Green, Ari ;
Khankhanian, Pouya ;
Baranzini, Sergio E. .
ELIFE, 2017, 6
[7]  
Kim H, 2020, BIOTECHNOL BIOPROC E, V25, P895
[8]   The case for AI-driven cancer clinical trials - The efficacy arm in silico [J].
Kolla, Likhitha ;
Gruber, Fred K. ;
Khalid, Omar ;
Hill, Colin ;
Parikh, Ravi B. .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2021, 1876 (01)
[9]   Machine learning algorithms to estimate everolimus exposure trained on simulated and patient pharmacokinetic profiles [J].
Labriffe, Marc ;
Woillard, Jean-Baptiste ;
Debord, Jean ;
Marquet, Pierre .
CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2022, 11 (08) :1018-1028
[10]   Success stories of AI in drug discovery-where do things stand? [J].
Mak, Kit-Kay ;
Balijepalli, Madhu Katyayani ;
Pichika, Mallikarjuna Rao .
EXPERT OPINION ON DRUG DISCOVERY, 2022, 17 (01) :79-92