Rankin-Selberg Integrals and L-Functions for Covering Groups of General Linear Groups

被引:4
作者
Kaplan, Eyal [1 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-5290002 Ramat Gan, Israel
基金
以色列科学基金会;
关键词
LANGLANDS QUOTIENT THEOREM; FINITE CENTRAL EXTENSIONS; AUTOMORPHIC-FORMS; WHITTAKER MODELS; EULER PRODUCTS; DISTINGUISHED REPRESENTATIONS; FOURIER COEFFICIENTS; EISENSTEIN SERIES; TENSOR PRODUCT; CLASSIFICATION;
D O I
10.1093/imrn/rnac201
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let GL(c)((m)) be the covering group of GL(c), obtained by restriction from the m-fold central extension of Matsumoto of the symplectic group. We introduce a new family of Rankin-Selberg integrals for representations of GL(c)((m)) x GL(k)((m)). The construction is based on certain assumptions, which we prove here for k = 1. Using the integrals, we define local gamma-, L-, and is an element of-factors. Globally, our construction is strong in the sense that the integrals are truly Eulerian. This enables us to define the completed L-function for cuspidal representations and prove its standard functional equation.
引用
收藏
页码:13332 / 13386
页数:55
相关论文
共 78 条
[1]   Derivatives for smooth representations of GL(n, R) and GL(n, C) [J].
Aizenbud, Avraham ;
Gourevitch, Dmitry ;
Sahi, Siddhartha .
ISRAEL JOURNAL OF MATHEMATICS, 2015, 206 (01) :1-38
[2]   Twisted homology for the mirabolic nilradical [J].
Aizenbud, Avraham ;
Gourevitch, Dmitry ;
Sahi, Siddhartha .
ISRAEL JOURNAL OF MATHEMATICS, 2015, 206 (01) :39-88
[3]  
[Anonymous], 1969, Ann. Sci. Ecole Norm. Sup., DOI DOI 10.24033/ASENS.1174
[4]  
[Anonymous], 2016, Univ. Lect. Ser.
[5]  
[Anonymous], 1979, P S PURE MATH
[6]  
Ban D, 2016, GLAS MAT, V51, P153
[7]   THE LANGLANDS QUOTIENT THEOREM FOR FINITE CENTRAL EXTENSIONS OF p-ADIC GROUPS [J].
Ban, Dubravka ;
Jantzen, Chris .
GLASNIK MATEMATICKI, 2013, 48 (02) :313-334
[8]   Heredity of Whittaker models on the metaplectic group [J].
Banks, WD .
PACIFIC JOURNAL OF MATHEMATICS, 1998, 185 (01) :89-96
[9]  
Banks WD, 1998, MATH RES LETT, V5, P781
[10]  
Banks WD, 1999, J REINE ANGEW MATH, V507, P131