The adoption of artificial intelligence assisted endoscopy in the Middle East: challenges and future potential

被引:0
作者
El-Sayed, Ahmed [1 ]
Salman, Sara [2 ]
Alrubaiy, Laith [3 ,4 ]
机构
[1] Chelsea & Westminster Hosp, Gastroenterol Dept, London, England
[2] Univ Sheffield, Sch Med, Sheffield, S Yorkshire, England
[3] Healthpoint Hosp, Gastroenterol Dept, M42 Healthcare,Saif Gobash St, Abu Dhabi, U Arab Emirates
[4] Khalifa Univ, Coll Med & Hlth Sci, Shakhbout Bin Sultan St, Abu Dhabi, U Arab Emirates
关键词
Artificial intelligence (AI); endoscopy; colonoscopy; gastroscopy; capsule endoscopy;
D O I
暂无
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
The use of artificial intelligence (AI) in endoscopy has shown immense potential to enhance diagnostic accuracy, streamline procedures, and improve patient outcomes. There are potential uses in every field of endoscopy, from improving adenoma detection rate (ADR) in colonoscopy to reducing read time in capsule endoscopy or minimizing blind spots in gastroscopy. Indeed, some of these systems are already licensed and in commercial use across the world. In the Middle East, where healthcare systems are rapidly evolving, there is a growing interest in adopting AI technologies to revolutionise endoscopic practices. This article provides an overview of the advancements, potential opportunities and challenges associated with the implementation of AI in endoscopy within the Middle East region. Our aim is to contribute to the ongoing dialogue surrounding the implementation of AI in endoscopy and consider some of the factors that are particularly relevant in the Middle Eastern context, including the need to train the models for local populations, cost and training, as well as trying to ensure equity of access for patients. It provides valuable insights for healthcare professionals, policymakers, and researchers interested in leveraging AI to enhance endoscopic procedures, improve patient care, and address the unique healthcare needs of the Middle East population.
引用
收藏
页数:8
相关论文
共 62 条
[1]   Hybrid Models for Endoscopy Image Analysis for Early Detection of Gastrointestinal Diseases Based on Fused Features [J].
Ahmed, Ibrahim Abdulrab ;
Senan, Ebrahim Mohammed ;
Shatnawi, Hamzeh Salameh Ahmad .
DIAGNOSTICS, 2023, 13 (10)
[2]   Clinical usefulness of a deep learning-based system as the first screening on small-bowel capsule endoscopy reading [J].
Aoki, Tomonori ;
Yamada, Atsuo ;
Aoyama, Kazuharu ;
Saito, Hiroaki ;
Fujisawa, Gota ;
Odawara, Nariaki ;
Kondo, Ryo ;
Tsuboi, Akiyoshi ;
Ishibashi, Rei ;
Nakada, Ayako ;
Niikura, Ryota ;
Fujishiro, Mitsuhiro ;
Oka, Shiro ;
Ishihara, Soichiro ;
Matsuda, Tomoki ;
Nakahori, Masato ;
Tanaka, Shinji ;
Koike, Kazuhiko ;
Tada, Tomohiro .
DIGESTIVE ENDOSCOPY, 2020, 32 (04) :585-591
[3]   Global burden of oesophageal and gastric cancer by histology and subsite in 2018 [J].
Arnold, Melina ;
Ferlay, Jacques ;
Henegouwen, Mark I. van Berge ;
Soerjomataram, Isabelle .
GUT, 2020, 69 (09) :1564-1571
[4]   Scoring endoscopic disease activity in IBD: artificial intelligence sees more and better than we do [J].
Bossuyt, Peter ;
Vermeire, Severine ;
Bisschops, Raf .
GUT, 2020, 69 (04) :788-+
[5]   Time to reduce the burden of removing diminutive polyps in colorectal cancer screening [J].
Brenner, Hermann ;
Hoffmeister, Michael ;
Stock, Christian .
GASTROINTESTINAL ENDOSCOPY, 2017, 85 (06) :1177-1179
[6]   Accurate Classification of Diminutive Colorectal Polyps Using Computer-Aided Analysis [J].
Chen, Peng-Jen ;
Lin, Meng-Chiung ;
Lai, Mei-Ju ;
Lin, Jung-Chun ;
Lu, Henry Horng-Shing ;
Tseng, Vincent S. .
GASTROENTEROLOGY, 2018, 154 (03) :568-575
[7]  
Corley DA, 2014, NEW ENGL J MED, V370, P1298, DOI [10.1056/NEJMoa1309086, 10.1056/NEJMc1405329]
[8]   Artificial Intelligence in Endoscopic Ultrasound for Pancreatic Cancer: Where Are We Now and What Does the Future Entail? [J].
Dahiya, Dushyant Singh ;
Al-Haddad, Mohammad ;
Chandan, Saurabh ;
Gangwani, Manesh Kumar ;
Aziz, Muhammad ;
Mohan, Babu P. ;
Ramai, Daryl ;
Canakis, Andrew ;
Bapaye, Jay ;
Sharma, Neil .
JOURNAL OF CLINICAL MEDICINE, 2022, 11 (24)
[9]   Deep learning algorithm detection of Barrett's neoplasia with high accuracy during live endoscopic procedures: a pilot study [J].
de Groof, Albert J. ;
Struyvenberg, Maarten R. ;
Fockens, Kiki N. ;
van der Putten, Joost ;
van der Sommen, Fons ;
Boers, Tim G. ;
Zinger, Sveta ;
Bisschops, Raf ;
de With, Peter H. ;
Pouw, Roos E. ;
Curvers, Wouter L. ;
Schoon, Erik J. ;
Bergman, Jacques J. G. H. M. .
GASTROINTESTINAL ENDOSCOPY, 2020, 91 (06) :1242-1250
[10]   Deep-Learning System Detects Neoplasia in Patients With Barrett's Esophagus With Higher Accuracy Than Endoscopists in a Multistep Training and Validation Study With Benchmarking [J].
de Groof, Albert J. ;
Struyvenberg, Maarten R. ;
van der Putten, Joost ;
van der Sommen, Fons ;
Fockens, Kiki N. ;
Curvers, Wouter L. ;
Zinger, Sveta ;
Pouw, Roos E. ;
Coron, Emmanuel ;
Baldaque-Silva, Francisco ;
Pech, Oliver ;
Weusten, Bas ;
Meining, Alexander ;
Neuhaus, Horst ;
Bisschops, Raf ;
Dent, John ;
Schoon, Erik J. ;
de With, Peter H. ;
Bergman, Jacques J. .
GASTROENTEROLOGY, 2020, 158 (04) :915-+