Realizations of crystal nets. I. (Generalized) derived graphs

被引:0
作者
McColm, Gregory [1 ]
机构
[1] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
来源
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES | 2024年 / 80卷
关键词
crystal nets; parametrization; realizations of graphs; voltage graphs; periodic graphs; BILBAO CRYSTALLOGRAPHIC SERVER;
D O I
10.1107/S205327332300949X
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A crystal net can be derived from a 'generalized' voltage graph representing a graph analog of a fundamental domain of that crystal net along with a sufficient collection of its symmetries. The voltage assignments include not only isometries to the (oriented) edges, but also 'weight' groups assigned to vertices for generating the vertex figures around those vertices. By varying the voltage assignments, one obtains geometrically distinct - and occasionally topologically distinct - Euclidean graphs. The focus here is on deriving simple graphs, i.e. graphs with no loops or lunes, especially uninodal edge transitive graphs.
引用
收藏
页码:18 / 32
页数:15
相关论文
共 40 条
[1]  
Abelson H., 1980, Turtle geometry: The computer as a medium for exploring mathematics
[2]  
[Anonymous], 1987, Crystallographic Databases
[3]  
Aroyo MI, 2011, BULG CHEM COMMUN, V43, P183
[4]   Bilbao crystallographic server. II. Representations of crystallographic point groups and space groups [J].
Aroyo, MI ;
Kirov, A ;
Capillas, C ;
Perez-Mato, JM ;
Wondratschek, H .
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2006, 62 :115-128
[5]   Bilbao crystallographic server: I. Databases and crystallographic computing programs [J].
Aroyo, MI ;
Perez-Mato, JM ;
Capillas, C ;
Kroumova, E ;
Ivantchev, S ;
Madariaga, G ;
Kirov, A ;
Wondratschek, H .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2006, 221 (01) :15-27
[6]  
Behzad M., 1979, GRAPHS DIGRAPHS
[7]   Applied Topological Analysis of Crystal Structures with the Program Package ToposPro [J].
Blatov, Vladislav A. ;
Shevchenko, Alexander P. ;
Proserpio, Davide M. .
CRYSTAL GROWTH & DESIGN, 2014, 14 (07) :3576-3586
[8]  
Brualdi RichardA., 1992, INTRO COMBINATORICS, Vsecond
[9]   NOMENCLATURE AND GENERATION OF 3-PERIODIC NETS - THE VECTOR METHOD [J].
CHUNG, SJ ;
HAHN, T ;
KLEE, WE .
ACTA CRYSTALLOGRAPHICA SECTION A, 1984, 40 (JAN) :42-50
[10]  
Clark W. E., 2008, Notes on Uninodal Nets