Inkjet-Printed Flexible Thin-Film Thermal Sensors for Detecting Elevated Temperature Range

被引:1
|
作者
Mitra, Dana [1 ]
Mitra, Kalyan Yoti [1 ]
Thalheim, Robert [1 ]
Zichner, Ralf [1 ,2 ]
机构
[1] Fraunhofer Inst Elect Nano Syst ENAS, Printed Funct, D-09126 Chemnitz, Germany
[2] Tech Univ Chemnitz, Professorship Microwave Engn, D-09126 Chemnitz, Germany
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2024年 / 221卷 / 04期
关键词
capacitances; elevated temperature detections; inkjet technologies; inkjet-printed metal-insulator-metal structures; thin-film electronics; FABRICATION; TRANSISTORS; RESISTORS;
D O I
10.1002/pssa.202300562
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
All inkjet-printed thermal sensors are manufactured based on a metal-insulator-metal (MIM) interface or capacitor architecture, for the adapted device size ranging from 16 to 36 mm2 active area. Two different material inks, namely a nanoparticle conductive silver ink and an inorganic-polymer-based hybrid insulator ink, are applied layer by layer on a thin flexible polyimide substrate, for developing the printed MIM devices. To ensure the desired electronic conductivity and insulation from the layers, the manufacturing process steps and parameters are tuned, accordingly. The results show that the inkjet-printed MIM devices could constitute up to 15 mu m thickness and demonstrate average detection of a change in electrical capacitance ranging from 20 to 100 pF, when the temperature is varied between 100 and 300 degrees C. The investigations also summarize that the change in the electrical response is enough to detect an increment of 50 degrees C. The printed sensors also display high operational stability and repeatability, when subjected to thermal cycling. The printed thermal sensors display high operational stability and repeatability, when subjected to thermal cycling. The investigation summarizes the change in the electrical capacitance as a function of temperature increment over an elevated range of 100-300 degrees C.image (c) 2023 WILEY-VCH GmbH
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Inkjet-printed, flexible, and photoactive thin film strain sensors
    Ryu, Donghyeon
    Meyers, Frederick N.
    Loh, Kenneth J.
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2015, 26 (13) : 1699 - 1710
  • [2] Recent Progress in Inkjet-Printed Thin-Film Transistors
    Chung, Seungjun
    Cho, Kyungjune
    Lee, Takhee
    ADVANCED SCIENCE, 2019, 6 (06)
  • [3] Low-temperature processing of inkjet-printed IZO thin-film transistors
    Lee, Jun Seok
    Choi, Woon-Seop
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2014, 64 (05) : 701 - 705
  • [4] Low-temperature processing of inkjet-printed IZO thin-film transistors
    Jun Seok Lee
    Woon-Seop Choi
    Journal of the Korean Physical Society, 2014, 64 : 701 - 705
  • [5] Stepped Annealed Inkjet-Printed InGaZnO Thin-Film Transistors
    Yan, Xingzhen
    Shi, Kai
    Chu, Xuefeng
    Yang, Fan
    Chi, Yaodan
    Yang, Xiaotian
    COATINGS, 2019, 9 (10)
  • [6] Inkjet-Printed Zinc Tin Oxide Thin-Film Transistor
    Kim, Dongjo
    Jeong, Youngmin
    Song, Keunkyu
    Park, Seong-Kee
    Cao, Guozhong
    Moon, Jooho
    LANGMUIR, 2009, 25 (18) : 11149 - 11154
  • [7] Flash Light Sintering of Silver Nanoink for Inkjet-Printed Thin-Film Transistor on Flexible Substrate
    Sarkar, Sudipta Kumar
    Gupta, Harshad
    Gupta, Dipti
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2017, 16 (03) : 375 - 382
  • [8] Dielectric optimization for Inkjet-Printed TIPSPentacene Organic Thin-Film Transistors
    Singh, Subhash
    Mohapatra, Y. N.
    2014 IEEE 2ND INTERNATIONAL CONFERENCE ON EMERGING ELECTRONICS (ICEE), 2014,
  • [9] Inkjet-printed InGaZnO thin film transistor
    Kim, Gun Hee
    Kim, Hyun Soo
    Shin, Hyun Soo
    Ahn, Byun Du
    Kim, Kyung Ho
    Kim, Hyun Jae
    THIN SOLID FILMS, 2009, 517 (14) : 4007 - 4010
  • [10] Fully Inkjet-Printed Flexible Temperature Sensors Based on Carbon and PEDOT:PSS
    Bali, C.
    Brandlmaier, A.
    Ganster, A.
    Raab, O.
    Zapf, J.
    Huebler, A.
    MATERIALS TODAY-PROCEEDINGS, 2016, 3 (03) : 739 - 745