In-Ground-Effect Disturbance-Rejection Altitude Control for Multi-Rotor UAVs

被引:4
作者
Diaz-Tellez, Juan [1 ,2 ]
Guerrero-Castellanos, J. Fermi [1 ]
Pouthier, Florian [3 ,4 ]
Marchand, Nicolas [3 ]
Durand, Sylvain [4 ]
机构
[1] Benemerita Univ Autonoma Puebla, Fac Ciencias Elect, Puebla 72570, Mexico
[2] TecNM Inst Tecnol Puebla, Dept Elect Elect, Puebla 72220, Mexico
[3] Univ Grenoble Alpes, GIPSA Lab, CNRS, Grenoble INP, F-38000 Grenoble, France
[4] Strasbourg Univ, CNRS, ICube Lab, INSA, F-67000 Strasbourg, France
关键词
In-ground-effect control; ADRC; Extended state observer; Multi-rotor-UAV; Low altitude; Wind gust; UNMANNED AERIAL VEHICLES; ATTITUDE-CONTROL; FLIGHT CONTROL; QUADROTOR UAV; STABILIZATION; OPTIMIZATION; TRACKING; POSITION;
D O I
10.1007/s10846-023-01958-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a robust altitude control that merges the principles of active disturbance rejection control (ADRC) with the in-ground-effect model (IGE). To this end, a nonlinear extended state observer is designed along the vertical axis, taking attitude and altitude measurements. Then, the forces generated by low-level flight, ground effect and other external disturbances are estimated and used (as an anticipation term) together with a non-linear control law (as a feedback term) to reject them. Closed-loop stability is analyzed in the Lyapunov sense. Extensive numerical simulations and real-time experiments validate the proposal. Thanks to its simplicity, the control algorithm is easy to implement. It can be used for various maneuvers that depend on proximity to the ground, obstacles or surfaces, such as take-off, landing, inspection, surveillance and hovering.
引用
收藏
页数:18
相关论文
共 56 条
[1]   Robust tracking control of quadrotor based on flatness and active disturbance rejection control [J].
Abadi, Amine ;
El Amraoui, Adnen ;
Mekki, Hassen ;
Ramdani, Nacim .
IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (08) :1057-1068
[2]   Control Strategies and Novel Techniques for Autonomous Rotorcraft Unmanned Aerial Vehicles: A Review [J].
Abdelmaksoud, Sherif I. ;
Mailah, Musa ;
Abdallah, Ayman M. .
IEEE ACCESS, 2020, 8 :195142-195169
[3]   Robust Composite-Disturbance Observer Based Flight Control of Quadrotor Attitude [J].
Ahmed, Nigar ;
Raza, Abid ;
Shah, Syed Awais Ali ;
Khan, Rameez .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2021, 103 (01)
[4]   Robust Model-Free Control Applied to a Quadrotor UAV [J].
Al Younes, Younes ;
Drak, Ahmad ;
Noura, Hassan ;
Rabhi, Abdelhamid ;
El Hajjaji, Ahmed .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2016, 84 (1-4) :37-52
[5]   Frequency-Based Wind Gust Estimation for Quadrotors Using a Nonlinear Disturbance Observer [J].
Asignacion, Abner ;
Suzuki, Satoshi ;
Noda, Ryusuke ;
Nakata, Toshiyuki ;
Liu, Hao .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) :9224-9231
[6]   Robust Motion Control of Nonlinear Quadrotor Model With Wind Disturbance Observer [J].
Azid, Sheikh Izzal ;
Kumar, Krishneel ;
Cirrincione, Maurizio ;
Fagiolini, Adriano .
IEEE ACCESS, 2021, 9 :149164-149175
[7]   A Globally Stabilizing Path Following Controller for Rotorcraft With Wind Disturbance Rejection [J].
Cabecinhas, David ;
Cunha, Rita ;
Silvestre, Carlos .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2015, 23 (02) :708-714
[8]   Real-time stabilization and tracking of a four-rotor mini rotorcraft [J].
Castillo, P ;
Dzul, A ;
Lozano, R .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2004, 12 (04) :510-516
[9]   Extended active observer for force estimation and disturbance rejection of robotic manipulators [J].
Chan, Linping ;
Naghdy, Faze ;
Stirling, David .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2013, 61 (12) :1277-1287
[10]   Obstacle avoidance and active disturbance rejection control for a quadrotor [J].
Chang, Kai ;
Xia, Yuanqing ;
Huang, Kaoli ;
Ma, Dailiang .
NEUROCOMPUTING, 2016, 190 :60-69