A Mixture Model for Estimating SARS-CoV-2 Seroprevalence in Chennai, India

被引:3
作者
Hitchings, Matt D. T. [1 ,7 ]
Patel, Eshan U. [2 ]
Khan, Rifa [3 ]
Srikrishnan, Aylur K. [3 ]
Anderson, Mark [4 ]
Kumar, K. S. [3 ]
Wesolowski, Amy P. [2 ]
Iqbal, Syed H. [3 ]
Rodgers, Mary A. [4 ]
Mehta, Shruti H. [2 ]
Cloherty, Gavin [4 ]
Cummings, Derek A. T. [5 ,6 ]
Solomon, Sunil S. [2 ]
机构
[1] Univ Florida, Coll Publ Hlth & Hlth Profess, Dept Biostat, Gainesville, FL USA
[2] Johns Hopkins Univ, Johns Hopkins Bloomberg Sch Publ Hlth, Dept Epidemiol, Baltimore, MD USA
[3] YR Gaitonde Ctr AIDS Res & Educ YRGCARE, Chennai, India
[4] Abbott Labs, Abbott Pk, IL USA
[5] Univ Florida, Coll Liberal Arts & Sci, Dept Biol, Gainesville, FL USA
[6] Univ Florida, Emerging Pathogens Inst, Gainesville, FL USA
[7] Univ Florida, Dept Biostat, Coll Publ Hlth & Hlth Profess, Clin & Translat Res Bldg,5th Floor,2004 Mowry Rd, Gainesville, FL 32603 USA
关键词
coronavirus disease 2019; COVID-19; India; mixture models; seroprevalence; serosurveys; SARS-CoV-2; severe acute respiratory syndrome coronavirus 2; POPULATION; KINETICS; ASSAYS;
D O I
10.1093/aje/kwad103
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Serological assays used to estimate the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) often rely on manufacturers' cutoffs established on the basis of severe cases. We conducted a household-based serosurvey of 4,677 individuals in Chennai, India, from January to May 2021. Samples were tested for SARS-CoV-2 immunoglobulin G (IgG) antibodies to the spike (S) and nucleocapsid (N) proteins. We calculated seroprevalence, defining seropositivity using manufacturer cutoffs and using a mixture model based on measured IgG level. Using manufacturer cutoffs, there was a 5-fold difference in seroprevalence estimated by each assay. This difference was largely reconciled using the mixture model, with estimated anti-S and anti-N IgG seroprevalence of 64.9% (95% credible interval (CrI): 63.8, 66.0) and 51.5% (95% CrI: 50.2, 52.9), respectively. Age and socioeconomic factors showed inconsistent relationships with anti-S and anti-N IgG seropositivity using manufacturer cutoffs. In the mixture model, age was not associated with seropositivity, and improved household ventilation was associated with lower seropositivity odds. With global vaccine scale-up, the utility of the more stable anti-S IgG assay may be limited due to the inclusion of the S protein in several vaccines. Estimates of SARS-CoV-2 seroprevalence using alternative targets must consider heterogeneity in seroresponse to ensure that seroprevalence is not underestimated and correlates are not misinterpreted.
引用
收藏
页码:1552 / 1561
页数:10
相关论文
共 37 条
[1]   SARS-CoV-2 Seroprevalence Survey Estimates Are Affected by Anti-Nucleocapsid Antibody Decline [J].
Bolotin, Shelly ;
Tran, Vanessa ;
Osman, Selma ;
Brown, Kevin A. ;
Buchan, Sarah A. ;
Joh, Eugene ;
Deeks, Shelley L. ;
Allen, Vanessa G. .
JOURNAL OF INFECTIOUS DISEASES, 2021, 223 (08) :1334-1338
[2]   Quantifying previous SARS-CoV-2 infection through mixture modelling of antibody levels [J].
Bottomley, C. ;
Otiende, M. ;
Uyoga, S. ;
Gallagher, K. ;
Kagucia, E. W. ;
Etyang, A. O. ;
Mugo, D. ;
Gitonga, J. ;
Karanja, H. ;
Nyagwange, J. ;
Adetifa, I. M. O. ;
Agweyu, A. ;
Nokes, D. J. ;
Warimwe, G. M. ;
Scott, J. A. G. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[3]   Estimating the cumulative incidence of SARS-CoV-2 with imperfect serological tests: Exploiting cutoff-free approaches [J].
Bouman, Judith A. ;
Riou, Julien ;
Bonhoeffer, Sebastian ;
Regoes, Roland R. .
PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (02)
[4]   Anti-SARS-CoV-2 Antibody Levels Measured by the AdviseDx SARS-CoV-2 Assay Are Concordant with Previously Available Serologic Assays but Are Not Fully Predictive of Sterilizing Immunity [J].
Bradley, Benjamin T. ;
Bryan, Andrew ;
Fink, Susan L. ;
Goecker, Erin A. ;
Roychoudhury, Pavitra ;
Huang, Meei-Li ;
Zhu, Haiying ;
Chaudhary, Anu ;
Madarampalli, Bhanupriya ;
Lu, Joyce Y. C. ;
Strand, Kathy ;
Whimbey, Estella ;
Bryson-Cahn, Chloe ;
Schippers, Adrienne ;
Mani, Nandita S. ;
Pepper, Gregory ;
Jerome, Keith R. ;
Morishima, Chihiro ;
Coombs, Robert W. ;
Wener, Mark ;
Cohen, Seth ;
Greninger, Alexander L. .
JOURNAL OF CLINICAL MICROBIOLOGY, 2021, 59 (09)
[5]   Performance Characteristics of the Abbott Architect SARS-CoV-2 IgG Assay and Seroprevalence in Boise, Idaho [J].
Bryan, Andrew ;
Pepper, Gregory ;
Wener, Mark H. ;
Fink, Susan L. ;
Morishima, Chihiro ;
Chaudhary, Anu ;
Jerome, Keith R. ;
Mathias, Patrick C. ;
Greninger, Alexander L. .
JOURNAL OF CLINICAL MICROBIOLOGY, 2020, 58 (08)
[6]  
Chen XH, 2021, LANCET GLOB HEALTH, V9, pE598, DOI [10.1016/S2214-109X(21)00026-7, 10.1101/2020.09.11.20192773]
[7]   IgG antibody response against nucleocapsid and spike protein post-SARS-CoV-2 infection [J].
Choudhary, Hari Ram ;
Parai, Debaprasad ;
Dash, Girish Chandra ;
Peter, Annalisha ;
Sahoo, Subrat Kumar ;
Pattnaik, Matrujyoti ;
Rout, Usha Kiran ;
Nanda, Rashmi Ranjan ;
Pati, Sanghamitra ;
Bhattacharya, Debdutta .
INFECTION, 2021, 49 (05) :1045-1048
[8]   Performance verification of the Abbott SARS-CoV-2 test for qualitative detection of IgG in Cali, Colombia [J].
del Mar Castro, Maria ;
Caicedo, Isabella ;
Johanna Ortiz-Rojas, Helen ;
Manuela Castillo, Carmen ;
Giovanna Medina, Adriana ;
Alexander, Neal ;
Adelaida Gomez, Maria ;
Albornoz, Ludwig L. .
PLOS ONE, 2021, 16 (09)
[9]   SARS-CoV-2 antibody persistence in COVID-19 convalescent plasma donors: Dependency on assay format and applicability to serosurveillance [J].
Di Germanio, Clara ;
Simmons, Graham ;
Kelly, Kathleen ;
Martinelli, Rachel ;
Darst, Orsolya ;
Azimpouran, Mahzad ;
Stone, Mars ;
Hazegh, Kelsey ;
Grebe, Eduard ;
Zhang, Shuting ;
Ma, Peijun ;
Orzechowski, Marek ;
Gomez, James E. ;
Livny, Jonathan ;
Hung, Deborah T. ;
Vassallo, Ralph ;
Busch, Michael P. ;
Dumont, Larry J. .
TRANSFUSION, 2021, 61 (09) :2677-2687
[10]  
Dorigatti I, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-24622-7