Vision-Based Virtual Impedance Control for Robotic System Without Prespecified Task Trajectory

被引:6
作者
Ding, Shuai [1 ]
Peng, Jinzhu [1 ]
Xin, Jianbin [1 ]
Zhang, Hui [2 ]
Wang, Yaonan [1 ,2 ]
机构
[1] Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou 450001, Peoples R China
[2] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Impedance; Robots; Task analysis; Trajectory; Robot kinematics; Visualization; Service robots; Neural network; potential field; robotic system; virtual impedance control; visual sensing;
D O I
10.1109/TIE.2022.3199917
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article proposes a vision-based virtual impedance control (VBVIC) scheme for the robotic system without prespecified task trajectory, where a neural network (NN) is used to compensate for the unmodeled dynamics and parameter uncertainties. In the proposed scheme, a novel control framework combined virtual potential field (VPF) with the impedance control is proposed to achieve noncontact impedance control, where the task trajectory does not need to be prespecified but is generated by integrating the bioinspired Tau-J into the virtual impedance model. Moreover, the virtual force generated by VPF is utilized to achieve the shaping and tracking of the task trajectory in the virtual impedance control scheme, and the information of target and obstacle is obtained by the visual sensing. The proposed VPF-based VBVIC scheme is analyzed by the Lyapunov stability theory and validated by a carrying task in simulations and experiments, respectively.
引用
收藏
页码:6046 / 6056
页数:11
相关论文
共 28 条
[1]  
Ding FG, 2005, 2005 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATIONS, VOLS 1-4, CONFERENCE PROCEEDINGS, P1711
[2]   Neural network-based adaptive hybrid impedance control for electrically driven flexible-joint robotic manipulators with input saturation [J].
Ding, Shuai ;
Peng, Jinzhu ;
Zhang, Hui ;
Wang, Yaonan .
NEUROCOMPUTING, 2021, 458 :99-111
[3]   Adaptive Virtual Impedance Control of a Mobile Multi-Robot System [J].
Engelbrecht, Duanne ;
Steyn, Nico ;
Djouani, Karim .
ROBOTICS, 2021, 10 (01) :1-18
[4]   Admittance-Based Controller Design for Physical Human-Robot Interaction in the Constrained Task Space [J].
He, Wei ;
Xue, Chengqian ;
Yu, Xinbo ;
Li, Zhijun ;
Yang, Chenguang .
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020, 17 (04) :1937-1949
[5]   IMPEDANCE CONTROL - AN APPROACH TO MANIPULATION .1. THEORY [J].
HOGAN, N .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1985, 107 (01) :1-7
[6]   A dynamical system approach to task-adaptation in physical human-robot interaction [J].
Khoramshahi, Mahdi ;
Billard, Aude .
AUTONOMOUS ROBOTS, 2019, 43 (04) :927-946
[7]   Impedance Learning for Robots Interacting With Unknown Environments [J].
Li, Yanan ;
Ge, Shuzhi Sam .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2014, 22 (04) :1422-1432
[8]   Adaptive Impedance Control of Human-Robot Cooperation Using Reinforcement Learning [J].
Li, Zhijun ;
Liu, Junqiang ;
Huang, Zhicong ;
Peng, Yan ;
Pu, Huayan ;
Ding, Liang .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (10) :8013-8022
[9]   Image-based visual-impedance control of a dual-arm aerial manipulator [J].
Lippiello, Vincenzo ;
Fontanelli, Giuseppe Andrea ;
Ruggiero, Fabio .
IEEE Robotics and Automation Letters, 2018, 3 (03) :1856-1863
[10]   A position-based visual impedance control for robot manipulators [J].
Lippiello, Vincenzo ;
Siciliano, Bruno ;
Villani, Luigi .
PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-10, 2007, :2068-+