Selenoprotein S Interacts with the Replication and Transcription Complex of SARS-CoV-2 by Binding nsp7

被引:0
|
作者
Ghelichkhani, Farid [1 ]
Gonzalez, Fabio A. [1 ]
Kapitonova, Mariia A. [1 ]
Rozovsky, Sharon [1 ]
机构
[1] Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
RESPIRATORY SYNDROME CORONAVIRUS; MULTIPROTEIN COMPLEXES; SELENOCYSTEINE; EXPRESSION; SELENIUM; ROLES; POLYMERASE; PROTEINS; DISEASE; LINK;
D O I
10.1016/j.jmb.2023.168008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replicates and evades detection using ER membranes and their associated protein machinery. Among these hijacked human proteins is selenoprotein S (selenos). This selenoprotein takes part in the protein quality control, signaling, and the regulation of cytokine secretion. While the role of selenos in the viral life cycle is not yet known, it has been reported to interact with SARS-CoV-2 nonstructural protein 7 (nsp7), a viral protein essential for the replication of the virus. We set to study whether selenos and nsp7 interact directly and if they can still bind when nsp7 is bound to the replication and transcription complex of the virus. Using biochem-ical assays, we show that selenos binds directly to nsp7. In addition, we found that selenos can bind to nsp7 when it is in a complex with the coronavirus's minimal replication and transcription complex, com-prised of nsp7, nsp8, and the RNA-dependent RNA polymerase nsp12. In addition, through crosslinking experiments, we mapped the interaction sites of selenos and nsp7 in the replication complex and showed that the hydrophobic segment of selenos is essential for binding to nsp7. This arrangement leaves an extended helix and the intrinsically disordered segment of selenos-including the reactive selenocys-teine-exposed and free to potentially recruit additional proteins to the replication and transcription complex.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Transient and stabilized complexes of Nsp7, Nsp8, and Nsp12 in SARS-CoV-2 replication
    Wilamowski, Mateusz
    Hammel, Michal
    Leite, Wellington
    Zhang, Qiu
    Kim, Youngchang
    Weiss, Kevin L.
    Jedrzejczak, Robert
    Rosenberg, Daniel J.
    Fan, Yichong
    Wower, Jacek
    Bierma, Jan C.
    Sarker, Altaf H.
    Tsutakawa, Susan E.
    Pingali, Sai Venkatesh
    O'Neill, Hugh M.
    Joachimiak, Andrzej
    Hura, Greg L.
    BIOPHYSICAL JOURNAL, 2021, 120 (15) : 3152 - 3165
  • [2] The role of NSP6 in the biogenesis of the SARS-CoV-2 replication organelle
    Ricciardi, Simona
    Guarino, Andrea Maria
    Giaquinto, Laura
    Polishchuk, Elena, V
    Santoro, Michele
    Di Tullio, Giuseppe
    Wilson, Cathal
    Panariello, Francesco
    Soares, Vinicius C.
    Dias, Suelen S. G.
    Santos, Julia C.
    Souza, Thiago M. L.
    Fusco, Giovanna
    Viscardi, Maurizio
    Brandi, Sergio
    Bozza, Patricia T.
    Polishchuk, Roman S.
    Venditti, Rossella
    De Matteis, Maria Antonietta
    NATURE, 2022, 606 (7915) : 761 - +
  • [3] SARS-CoV-2 nsp3 and nsp4 are minimal constituents of a pore spanning replication organelle
    Zimmermann, Liv
    Zhao, Xiaohan
    Makroczyova, Jana
    Wachsmuth-Melm, Moritz
    Prasad, Vibhu
    Hensel, Zach
    Bartenschlager, Ralf
    Chlanda, Petr
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [4] SARS-CoV-2: from its discovery to genome structure, transcription, and replication
    Brant, Ayslan Castro
    Tian, Wei
    Majerciak, Vladimir
    Yang, Wei
    Zheng, Zhi-Ming
    CELL AND BIOSCIENCE, 2021, 11 (01)
  • [5] SARS-CoV-2 replication and drug discovery
    Nazir, Farah
    Kombe, Arnaud John Kombe
    Khalid, Zunera
    Bibi, Shaheen
    Zhang, Hongliang
    Wu, Songquan
    Jin, Tengchuan
    MOLECULAR AND CELLULAR PROBES, 2024, 77
  • [6] Cell Entry and Unusual Replication of SARS-CoV-2
    McCann, Nathan
    Castellino, Francis J.
    CURRENT DRUG TARGETS, 2022, 23 (17) : 1539 - 1554
  • [7] Disruption of the Golgi Apparatus and Contribution of the Endoplasmic Reticulum to the SARS-CoV-2 Replication Complex
    Hackstadt, Ted
    Chiramel, Abhilash I.
    Hoyt, Forrest H.
    Williamson, Brandi N.
    Dooley, Cheryl A.
    Beare, Paul A.
    de Wit, Emmie
    Best, Sonja M.
    Fischer, Elizabeth R.
    VIRUSES-BASEL, 2021, 13 (09):
  • [8] Computational Analysis of SAM Analogs as Methyltransferase Inhibitors of nsp16/nsp10 Complex from SARS-CoV-2
    Balieiro, Alessandra M.
    Anunciacao, Eduarda L. S.
    Costa, Clauber H. S.
    Qayed, Wesam S.
    Silva, Jose Rogerio A.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (22)
  • [9] Attacking the SARS-CoV-2 Replication Machinery with the Pathogen Box's Molecules
    Osorio-Mogollon, Cleidy
    Olivos-Ramirez, Gustavo E.
    Otazu, Kewin
    Chenet-Zuta, Manuel E.
    Ropon-Palacios, Georcki
    Aguiar, Cinthia das Dores
    Camps, Ihosvany
    Jimenez-Avalos, Gabriel M.
    Apari-Cossio, Eduardo
    Moreira, Natalia E. Torres E.
    Cardenas-Cardenas, Reyna G.
    LETTERS IN DRUG DESIGN & DISCOVERY, 2023, 20 (07) : 808 - 820
  • [10] Effects of Epitranscriptomic RNA Modifications on the Catalytic Activity of the SARS-CoV-2 Replication Complex
    Apostle, Alexander
    Yin, Yipeng
    Chillar, Komal
    Eriyagama, Adikari M. D. N.
    Arneson, Reed
    Burke, Emma
    Fang, Shiyue
    Yuan, Yinan
    CHEMBIOCHEM, 2023,