ASTROMER A transformer-based embedding for the representation of light curves

被引:21
作者
Donoso-Oliva, C. [1 ,3 ,4 ]
Becker, I. [2 ,4 ,5 ]
Protopapas, P. [3 ]
Cabrera-Vives, G. [1 ,4 ]
Vishnu, M. [3 ]
Vardhan, H. [5 ]
机构
[1] Univ Concepcion, Dept Comp Sci, Concepcion 4070386, Chile
[2] Pontificia Univ Catolica Chile, Dept Comp Sci, Santiago 7820436, Chile
[3] Harvard Univ, Inst Appl Computat Sci, Cambridge, MA 02138 USA
[4] Millennium Inst Astrophys MAS, Nuncio Monsenor Sotero Sanz 100, Santiago, Chile
[5] Univ AI, Singapore 050531, Singapore
关键词
methods; statistical; -; stars; statistics; techniques; photometric; VARIABLE-STARS; NEURAL-NETWORK; CLASSIFICATION; SYSTEM; IMPACT;
D O I
10.1051/0004-6361/202243928
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Taking inspiration from natural language embeddings, we present ASTROMER, a transformer-based model to create representations of light curves. ASTROMER was pre-trained in a self-supervised manner, requiring no human-labeled data. We used millions of R-band light sequences to adjust the ASTROMER weights. The learned representation can be easily adapted to other surveys by re-training ASTROMER on new sources. The power of ASTROMER consists in using the representation to extract light curve embeddings that can enhance the training of other models, such as classifiers or regressors. As an example, we used ASTROMER embeddings to train two neural-based classifiers that use labeled variable stars from MACHO, OGLE-III, and ATLAS. In all experiments, ASTROMER-based classifiers outperformed a baseline recurrent neural network trained on light curves directly when limited labeled data were available. Furthermore, using ASTROMER embeddings decreases the computational resources needed while achieving state-of-the-art results. Finally, we provide a Python library that includes all the functionalities employed in this work.
引用
收藏
页数:13
相关论文
共 42 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   The MACHO project: Microlensing results from 5.7 years of Large Magellanic Cloud observations [J].
Alcock, C ;
Allsman, RA ;
Alves, DR ;
Axelrod, TS ;
Becker, AC ;
Bennett, DP ;
Cook, KH ;
Dalal, N ;
Drake, AJ ;
Freeman, KC ;
Geha, M ;
Griest, K ;
Lehner, MJ ;
Marshall, SL ;
Minniti, D ;
Nelson, CA ;
Peterson, BA ;
Popowski, P ;
Pratt, MR ;
Quinn, PJ ;
Stubbs, CW ;
Sutherland, W ;
Tomaney, AB ;
Vandehei, T ;
Welch, D .
ASTROPHYSICAL JOURNAL, 2000, 542 (01) :281-307
[3]   Calibration of the MACHO photometry database [J].
Alcock, C ;
Allsman, RA ;
Alves, DR ;
Axelrod, TS ;
Becker, AC ;
Bennett, DP ;
Cook, KH ;
Drake, AJ ;
Freeman, KC ;
Geha, M ;
Griest, K ;
Lehner, MJ ;
Marshall, SL ;
Minniti, D ;
Peterson, BA ;
Popowski, P ;
Pratt, MR ;
Nelson, CA ;
Quinn, PJ ;
Stubbs, CW ;
Sutherland, W ;
Tomaney, AB ;
Vandehei, T ;
Welch, DL .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 1999, 111 (766) :1539-1558
[4]  
Alcock C., 2003, VIZIER ONLINE DATA C
[5]  
Allam T Jr, 2023, Arxiv, DOI arXiv:2105.06178
[6]  
Ba JL, 2016, Layer normalization
[7]   Scalable end-to-end recurrent neural network for variable star classification [J].
Becker, I ;
Pichara, K. ;
Catelan, M. ;
Protopapas, P. ;
Aguirre, C. ;
Nikzat, F. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 493 (02) :2981-2995
[8]   TRAINING WITH NOISE IS EQUIVALENT TO TIKHONOV REGULARIZATION [J].
BISHOP, CM .
NEURAL COMPUTATION, 1995, 7 (01) :108-116
[9]  
Catelan M., 2015, Pulsating Stars
[10]  
Catelan M., 2004, INT ASTRONOMICAL UNI, V193, P113