Theoretical and numerical bifurcation analysis of a predator-prey system with ratio-dependence

被引:9
作者
Eskandari, Z. [1 ]
Avazzadeh, Z. [2 ]
Ghaziani, R. Khoshsiar [3 ]
机构
[1] Fasa Univ, Fac Sci, Dept Math, Fasa, Iran
[2] Univ South Africa, Dept Math Sci, Florida, South Africa
[3] Shahrekord Univ, Dept Math Sci, Shahrekord, Iran
关键词
The ratio-dependence model; Normal form coefficient; Bifurcation; Chaos; Numerical continuation; NEIMARK-SACKER BIFURCATION; PERIODIC-SOLUTIONS; DISCRETE; STABILITY; DYNAMICS; MODEL; CHAOS;
D O I
10.1007/s40096-022-00494-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper investigates the critical normal form coefficients for the one-parameter and two-parameter bifurcations of a two-dimensional discrete-time ratio-dependence predator-prey model. The discrete-time ratio-dependence predator-prey model exhibits the period-doubling, Neimark-Sacker, and strong resonance bifurcations. Based on the critical coefficients, it can be determined which scenario corresponds to each bifurcation. This paper investigates the complex dynamics of the model numerically by using MatcotM which is a MATLAB package.
引用
收藏
页码:205 / 216
页数:12
相关论文
共 34 条
[1]   Bifurcation analysis of a predator-prey model with predator intraspecific interactions and ratio-dependent functional response [J].
Arancibia-Ibarra, Claudio ;
Aguirre, Pablo ;
Flores, Jose ;
van Heijster, Peter .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 402
[2]   BIFURCATION AND CHAOS IN A DISCRETE TIME PREDATOR-PREY SYSTEM OF LESLIE TYPE WITH GENERALIZED HOLLING TYPE III FUNCTIONAL RESPONSE [J].
Atabaigi, Ali .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (02) :411-426
[3]  
Elabbasy E., 2007, International Journal of Nonlinear Science, V4, P171
[4]   Qualitative properties and bifurcations of discrete-time Bazykin-Berezovskaya predator-prey model [J].
Elsadany, A. A. ;
Din, Qamar ;
Salman, S. M. .
INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2020, 13 (06)
[5]   Dynamics and bifurcations of a discrete-time prey-predator model with Allee effect on the prey population [J].
Eskandari, Z. ;
Alidousti, J. ;
Avazzadeh, Z. ;
Machado, J. A. Tenreiro .
ECOLOGICAL COMPLEXITY, 2021, 48
[6]   Generalized flip and strong resonances bifurcations of a predator-prey model [J].
Eskandari, Zohreh ;
Alidousti, Javad .
INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2021, 9 (01) :275-287
[7]   Stability and codimension 2 bifurcations of a discrete time SIR model [J].
Eskandari, Zohreh ;
Alidousti, Javad .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2020, 357 (15) :10937-10959
[8]   Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system [J].
Fan, M ;
Wang, K .
MATHEMATICAL AND COMPUTER MODELLING, 2002, 35 (9-10) :951-961
[9]   Periodic solutions for a discrete time predator-prey system with monotone functional responses [J].
Fazly, Mostafa ;
Hesaaraki, Mahmoud .
COMPTES RENDUS MATHEMATIQUE, 2007, 345 (04) :199-202
[10]   Population dynamic regulators in an empirical predator-prey system [J].
Frank, A. ;
Subbey, S. ;
Kobras, M. ;
Gjosaeter, H. .
JOURNAL OF THEORETICAL BIOLOGY, 2021, 527