Toward a Robust Sensor Fusion Step for 3D Object Detection on Corrupted Data

被引:1
作者
Wozniak, Maciej K. [1 ]
Karefjard, Viktor [1 ]
Thiel, Marko [2 ]
Jensfelt, Patric [1 ]
机构
[1] KTH Royal Inst Technol, Div Robot Percept & Learning, S-11428 Stockholm, Sweden
[2] Hamburg Univ Technol, Inst Tech Logist, D-21073 Hamburg, Germany
关键词
Object detection; segmentation and categorization; sensor fusion; deep learning for visual perception; LIDAR;
D O I
10.1109/LRA.2023.3313924
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Multimodal sensor fusion methods for 3D object detection have been revolutionizing the autonomous driving research field. Nevertheless, most of these methods heavily rely on dense LiDAR data and accurately calibrated sensors which is often not the case in real-world scenarios. Data from LiDAR and cameras often come misaligned due to the miscalibration, decalibration, or different frequencies of the sensors. Additionally, some parts of the LiDAR data may be occluded and parts of the data may be missing due to hardware malfunction or weather conditions. This work presents a novel fusion step that addresses data corruptions and makes sensor fusion for 3D object detection more robust. Through extensive experiments, we demonstrate that our method performs on par with state-of-the-art approaches on normal data and outperforms them on misaligned data.
引用
收藏
页码:7018 / 7025
页数:8
相关论文
共 23 条
  • [1] TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with Transformers
    Bai, Xuyang
    Hu, Zeyu
    Zhu, Xinge
    Huang, Qingqiu
    Chen, Yilun
    Fu, Hangbo
    Tai, Chiew-Lan
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1080 - 1089
  • [2] Caesar H, 2020, PROC CVPR IEEE, P11618, DOI 10.1109/CVPR42600.2020.01164
  • [3] RoIFusion: 3D Object Detection From LiDAR and Vision
    Chen, Can
    Fragonara, Luca Zanotti
    Tsourdos, Antonios
    [J]. IEEE ACCESS, 2021, 9 (09): : 51710 - 51721
  • [4] Multi-View 3D Object Detection Network for Autonomous Driving
    Chen, Xiaozhi
    Ma, Huimin
    Wan, Ji
    Li, Bo
    Xia, Tian
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6526 - 6534
  • [5] Observability-Aware Online Multi-Lidar Extrinsic Calibration
    Das, Sandipan
    Klinteberg, Ludvig Af
    Fallon, Maurice
    Chatterjee, Saikat
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (05) : 2860 - 2867
  • [6] Vision meets robotics: The KITTI dataset
    Geiger, A.
    Lenz, P.
    Stiller, C.
    Urtasun, R.
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) : 1231 - 1237
  • [7] Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]
  • [8] Huang KL, 2022, Arxiv, DOI [arXiv:2202.02703, 10.48550/arXiv.2202.02703, DOI 10.48550/ARXIV.2202.02703]
  • [9] Semantic 3D Grid Maps for Autonomous Driving
    Khoche, Ajinkya
    Wozniak, Maciej K.
    Duberg, Daniel
    Jensfelt, Patric
    [J]. 2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 2681 - 2688
  • [10] PointPillars: Fast Encoders for Object Detection from Point Clouds
    Lang, Alex H.
    Vora, Sourabh
    Caesar, Holger
    Zhou, Lubing
    Yang, Jiong
    Beijbom, Oscar
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 12689 - 12697