Development and validation of machine-learning models for the difficulty of retroperitoneal laparoscopic adrenalectomy based on radiomics

被引:3
|
作者
Sun, Shiwei [1 ]
Yao, Wei [1 ]
Wang, Yue [1 ]
Yue, Peng [1 ]
Guo, Fuyu [1 ]
Deng, Xiaoqian [1 ]
Zhang, Yangang [1 ,2 ]
机构
[1] Shanxi Med Univ, Hosp 3, Shanxi Bethune Hosp, Tongji Shanxi Hosp,Shanxi Acad Med Sci, Taiyuan, Peoples R China
[2] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Wuhan, Peoples R China
来源
FRONTIERS IN ENDOCRINOLOGY | 2023年 / 14卷
关键词
adrenal tumor; laparoscopy; retroperitoneal space; machine learning; radiomics; random forest; extreme gradient boosting; PHEOCHROMOCYTOMA; TUMOR;
D O I
10.3389/fendo.2023.1265790
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
ObjectiveThe aim is to construct machine learning (ML) prediction models for the difficulty of retroperitoneal laparoscopic adrenalectomy (RPLA) based on clinical and radiomic characteristics and to validate the models.MethodsPatients who had undergone RPLA at Shanxi Bethune Hospital between August 2014 and December 2020 were retrospectively gathered. They were then randomly split into a training set and a validation set, maintaining a ratio of 7:3. The model was constructed using the training set and validated using the validation set. Furthermore, a total of 117 patients were gathered between January and December 2021 to form a prospective set for validation. Radiomic features were extracted by drawing the region of interest using the 3D slicer image computing platform and Python. Key features were selected through LASSO, and the radiomics score (Rad-score) was calculated. Various ML models were constructed by combining Rad-score with clinical characteristics. The optimal models were selected based on precision, recall, the area under the curve, F1 score, calibration curve, receiver operating characteristic curve, and decision curve analysis in the training, validation, and prospective sets. Shapley Additive exPlanations (SHAP) was used to demonstrate the impact of each variable in the respective models.ResultsAfter comparing the performance of 7 ML models in the training, validation, and prospective sets, it was found that the RF model had a more stable predictive performance, while xGBoost can significantly benefit patients. According to SHAP, the variable importance of the two models is similar, and both can reflect that the Rad-score has the most significant impact. At the same time, clinical characteristics such as hemoglobin, age, body mass index, gender, and diabetes mellitus also influenced the difficulty.ConclusionThis study constructed ML models for predicting the difficulty of RPLA by combining clinical and radiomic characteristics. The models can help surgeons evaluate surgical difficulty, reduce risks, and improve patient benefits.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Incorporating Radiomics into Machine Learning Models to Predict Outcomes of Neuroblastoma
    Gengbo Liu
    Mini Poon
    Matthew A. Zapala
    William C. Temple
    Kieuhoa T. Vo
    Kathrine K. Matthay
    Debasis Mitra
    Youngho Seo
    Journal of Digital Imaging, 2022, 35 : 605 - 612
  • [32] Development and Validation of a Machine-Learning Model to Predict Early Recurrence of Intrahepatic Cholangiocarcinoma
    Alaimo, Laura
    Lima, Henrique A.
    Moazzam, Zorays
    Endo, Yutaka
    Yang, Jason
    Ruzzenente, Andrea
    Guglielmi, Alfredo
    Aldrighetti, Luca
    Weiss, Matthew
    Bauer, Todd W. W.
    Alexandrescu, Sorin
    Poultsides, George A. A.
    Maithel, Shishir K. K.
    Marques, Hugo P. P.
    Martel, Guillaume
    Pulitano, Carlo
    Shen, Feng
    Cauchy, Francois
    Koerkamp, Bas Groot
    Endo, Itaru
    Kitago, Minoru
    Pawlik, Timothy M. M.
    ANNALS OF SURGICAL ONCOLOGY, 2023, 30 (09) : 5406 - 5415
  • [33] Incorporating Radiomics into Machine Learning Models to Predict Outcomes of Neuroblastoma
    Liu, Gengbo
    Poon, Mini
    Zapala, Matthew A.
    Temple, William C.
    Vo, Kieuhoa T.
    Matthay, Kathrine K.
    Mitra, Debasis
    Seo, Youngho
    JOURNAL OF DIGITAL IMAGING, 2022, 35 (03) : 605 - 612
  • [34] Development and validation of survival prognostic models for head and neck cancer patients using machine learning and dosiomics and CT radiomics features: a multicentric study
    Zahra Mansouri
    Yazdan Salimi
    Mehdi Amini
    Ghasem Hajianfar
    Mehrdad Oveisi
    Isaac Shiri
    Habib Zaidi
    Radiation Oncology, 19
  • [35] Development of a machine-learning based voice disorder screening tool
    Reid, Jonathan
    Parmar, Preet
    Lund, Tyler
    Aalto, Daniel K.
    Jeffery, Caroline C.
    AMERICAN JOURNAL OF OTOLARYNGOLOGY, 2022, 43 (02)
  • [36] Development and validation of three machine-learning models for predicting multiple organ failure in moderately severe and severe acute pancreatitis
    Qiu, Qiu
    Nian, Yong-jian
    Guo, Yan
    Tang, Liang
    Lu, Nan
    Wen, Liang-zhi
    Wang, Bin
    Chen, Dong-feng
    Liu, Kai-jun
    BMC GASTROENTEROLOGY, 2019, 19 (1)
  • [37] Comparison of Radiomics-Based Machine-Learning Classifiers in Diagnosis of Glioblastoma From Primary Central Nervous System Lymphoma
    Chen, Chaoyue
    Zheng, Aiping
    Ou, Xuejin
    Wang, Jian
    Ma, Xuelei
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [38] Development and validation of three machine-learning models for predicting multiple organ failure in moderately severe and severe acute pancreatitis
    Qiu Qiu
    Yong-jian Nian
    Yan Guo
    Liang Tang
    Nan Lu
    Liang-zhi Wen
    Bin Wang
    Dong-feng Chen
    Kai-jun Liu
    BMC Gastroenterology, 19
  • [39] Advancing interpretability of machine-learning prediction models
    Trenary, Laurie
    DelSole, Timothy
    ENVIRONMENTAL DATA SCIENCE, 2022, 1
  • [40] Developing and Improving Risk Models using Machine-learning Based Algorithms
    Wang, Yan
    Ni, Xuelei Sherry
    PROCEEDINGS OF THE 2019 ANNUAL ACM SOUTHEAST CONFERENCE (ACMSE 2019), 2019, : 281 - 282