High carrier mobility and strong electron-phonon coupling in graphene-WS2 heterobilayers under pressure

被引:0
作者
Zhen, Jiapeng [1 ,2 ]
Huang, Qiushi [3 ]
Liu, Ying [1 ,2 ]
Zhang, Shihui [4 ]
Dong, Hongliang [4 ]
Lv, Kehong [1 ,2 ]
Qiu, Jing [1 ,2 ]
Liu, Guanjun [1 ,2 ]
机构
[1] Natl Univ Def Technol, Coll Intelligence Sci & Technol, Changsha 410073, Hunan, Peoples R China
[2] Natl Univ Def Technol, Sci & Technol Integrated Logist Support Lab, Changsha 410073, Hunan, Peoples R China
[3] Beijing Computat Sci Res Ctr, Beijing 100093, Peoples R China
[4] Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China
基金
中国国家自然科学基金;
关键词
RAMAN-SCATTERING; INTENSITY; MONOLAYER;
D O I
10.1039/d3tc03438k
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Graphene-TMD heterojunctions with strong electron-phonon coupling are expected in nano-photodetectors, yet the chemical doping hinders the performance of graphene, and the limited photoelectric conversion and lack of effective regulation of interlayer interactions hinder further research on heterostructures. Here, we investigate the effect of hydrostatic pressure on vertically stacked monolayer-graphene and monolayer-WS2 heterostructures, and the phonon pattern in the vertical direction is significantly enhanced during compression, indicating that the interlayer electron transition dominates. We further analyze the pressure evolution of doping concentration and Fano scattering, showing the three stages of charge transfer and the significant effect of pressure on the strength of electron-phonon coupling, which provide a platform for regulating the physical properties of quantum interference between electrons and phonons. Finally, density functional theory (DFT) calculations confirm the strong p-type doping in graphene and pressure-induced transitions in heterojunction band structures. These findings suggest that graphene-based heterobilayers are promising candidates for future optoelectronic applications.
引用
收藏
页码:15555 / 15563
页数:9
相关论文
共 35 条
  • [1] Direct evidence for efficient ultrafast charge separation in epitaxial WS2/graphene heterostructures
    Aeschlimann, Sven
    Rossi, Antonio
    Chavez-Cervantes, Mariana
    Krause, Razvan
    Arnoldi, Benito
    Stadtmueller, Benjamin
    Aeschlimann, Martin
    Forti, Stiven
    Fabbri, Filippo
    Coletti, Camilla
    Gierz, Isabella
    [J]. SCIENCE ADVANCES, 2020, 6 (20):
  • [2] Two-dimensional flexible nanoelectronics
    Akinwande, Deji
    Petrone, Nicholas
    Hone, James
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [3] Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
  • [4] Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices
    Bao, Qiaoliang
    Loh, Kian Ping
    [J]. ACS NANO, 2012, 6 (05) : 3677 - 3694
  • [5] Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene
    Basko, D. M.
    Piscanec, S.
    Ferrari, A. C.
    [J]. PHYSICAL REVIEW B, 2009, 80 (16)
  • [6] IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS
    BLOCHL, PE
    JEPSEN, O
    ANDERSEN, OK
    [J]. PHYSICAL REVIEW B, 1994, 49 (23): : 16223 - 16233
  • [7] Superconductivity in Pristine 2Ha-MoS2 at Ultrahigh Pressure
    Chi, Zhenhua
    Chen, Xuliang
    Yen, Fei
    Peng, Feng
    Zhou, Yonghui
    Zhu, Jinlong
    Zhang, Yijin
    Liu, Xiaodi
    Lin, Chuanlong
    Chu, Shengqi
    Li, Yanchun
    Zhao, Jinggeng
    Kagayama, Tomoko
    Ma, Yanming
    Yang, Zhaorong
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (03)
  • [8] High carrier mobility in graphene doped using a monolayer of tungsten oxyselenide
    Choi, Min Sup
    Nipane, Ankur
    Kim, Brian S. Y.
    Ziffer, Mark E.
    Datta, Ipshita
    Borah, Abhinandan
    Jung, Younghun
    Kim, Bumho
    Rhodes, Daniel
    Jindal, Apoorv
    Lamport, Zachary A.
    Lee, Myeongjin
    Zangiabadi, Amirali
    Nair, Maya N.
    Taniguchi, Takashi
    Watanabe, Kenji
    Kymissis, Ioannis
    Pasupathy, Abhay N.
    Lipson, Michal
    Zhu, Xiaoyang
    Yoo, Won Jong
    Hone, James
    Teherani, James T.
    [J]. NATURE ELECTRONICS, 2021, 4 (10) : 731 - 739
  • [9] Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor
    Das, A.
    Pisana, S.
    Chakraborty, B.
    Piscanec, S.
    Saha, S. K.
    Waghmare, U. V.
    Novoselov, K. S.
    Krishnamurthy, H. R.
    Geim, A. K.
    Ferrari, A. C.
    Sood, A. K.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 210 - 215
  • [10] Charge Versus Energy Transfer in Atomically Thin Graphene-Transition Metal Dichalcogenide van der Waals Heterostructures
    Froehlicher, Guillaume
    Lorchat, Etienne
    Berciaud, Stephane
    [J]. PHYSICAL REVIEW X, 2018, 8 (01):