A Legendre spectral method for multidimensional partial Volterra integro-differential equations

被引:9
作者
Zheng, Weishan [1 ]
Chen, Yanping [2 ]
Zhou, Jianwei [3 ]
机构
[1] Hanshan Normal Univ, Coll Math & Stat, Chaozhou 521041, Guangdong, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[3] Linyi Univ, Sch Math & Stat, Linyi 276005, Peoples R China
基金
中国国家自然科学基金;
关键词
Volterra integro-differential equations; Legendre spectral method; Exponential convergence; Reliability; Gauss-Legendre quadrature rule; POLYNOMIAL-APPROXIMATION; COLLOCATION METHODS; 4TH-ORDER EQUATION; INTEGRAL-EQUATIONS; CONVERGENCE;
D O I
10.1016/j.cam.2023.115302
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a Legendre spectral method for solving multidimensional partial Volterra integro-differential equations. The main idea of our approach is first to employ some function transformations and variable transformations to transform the equations into new partial Volterra integro-differential equations, and then the Legendre spectral method is used to solve the equivalent equations. We derive error bounds in L-infinity- and L-2-norms, which indicate that the errors of solution and the first order partial derivative decay exponentially. Three numerical examples are displayed to confirm the reliability of the Legendre spectral analysis. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 40 条
[1]   Solving nonlinear two-dimensional Volterra integro-differential equations by block-pulse functions [J].
Aghazadeh N. ;
Khajehnasiri A.A. .
Mathematical Sciences, 2013, 7 (1)
[2]  
ALI I., 2010, J COMPUT MATH, V28, P962
[3]   Numerical solutions of nonlinear two-dimensional partial Volterra integro-differential equations by Haar wavelet [J].
Babaaghaie, A. ;
Maleknejad, K. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 317 :643-651
[4]   An operational matrix based scheme for numerical solutions of nonlinear weakly singular partial integro-differential equations [J].
Behera, S. ;
Ray, S. Saha .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 367
[5]  
Brunner H., 2017, VOLTERRA INTEGRAL EQ
[6]  
Canuto C., 2007, SCIENTIF COMPUT
[7]   Error estimates of spectral Legendre-Galerkin methods for the fourth-order equation in one dimension [J].
Chen, Yanping ;
Zhou, Jianwei .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 :1217-1226
[8]   Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review [J].
Cheng, C. M. ;
Peng, Z. K. ;
Zhang, W. M. ;
Meng, G. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 87 :340-364
[9]  
Colton D., 2013, INVERSE ACOUSTIC ELE, DOI [10.1007/978-1-4614-4942-3, DOI 10.1007/978-3-662-03537-5]
[10]   New computational method for solving some 2-dimensional nonlinear Volterra integro-differential equations [J].
Darania, Parviz ;
Shali, Jafar Ahmadi ;
Ivaz, Karim .
NUMERICAL ALGORITHMS, 2011, 57 (01) :125-147