Virtual braid groups, virtual twin groups and crystallographic groups

被引:4
作者
Junior, Paulo Cesar Cerqueira Dos Santos [1 ]
Ocampo, Oscar [1 ]
机构
[1] Univ Fed Bahia, Dept Matemat Inst Matemat & Estat, BR-40170110 Salvador, BA, Brazil
关键词
Virtual braid group; Virtual twin group; Crystallographic group; FLAT MANIFOLDS;
D O I
10.1016/j.jalgebra.2023.06.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n & GE; 2. Let VBn (resp. VPn) be the virtual braid group (resp. the pure virtual braid group), and let VTn (resp. PVTn) be the virtual twin group (resp. the pure virtual twin group). Let & pi; be one of the following quotients: V Bn/& UGamma;2(V Pn) or VTn/& UGamma;2(PVTn) where & UGamma;2(H) is the commutator subgroup of H. In this paper, we show that & pi; is a crystallographic group and we characterize the elements of finite order and the conjugacy classes of elements in & pi;. Furthermore, we realize explicitly some Bieberbach groups and infinite virtually cyclic groups in & pi;. Finally, we also study other braid-like groups (welded, unrestricted, flat virtual, flat welded and Gauss virtual braid group) modulo the respective commutator subgroup in each case.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:567 / 601
页数:35
相关论文
共 29 条
[1]   Combinatorial properties of virtual braids [J].
Bardakov, Valerij G. ;
Bellingeri, Paolo .
TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (06) :1071-1082
[2]   Virtual and universal braid groups, their quotients and representations [J].
Bardakov, Valeriy ;
Emel'yanenkov, Ivan ;
Ivanov, Maxim ;
Kozlovskaya, Tatyana ;
Nasybullov, Timur ;
Vesnin, Andrei .
JOURNAL OF GROUP THEORY, 2022, 25 (04) :679-712
[3]   Structural aspects of twin and pure twin groups [J].
Bardakov, Valeriy ;
Singh, Mahender ;
Vesnin, Andrei .
GEOMETRIAE DEDICATA, 2019, 203 (01) :135-154
[4]   Unrestricted virtual braids, fused links and other quotients of virtual braid groups [J].
Bardakov, Valeriy G. ;
Bellingeri, Paolo ;
Damiani, Celeste .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2015, 24 (12)
[5]   The virtual and universal braids [J].
Bardakov, VG .
FUNDAMENTA MATHEMATICAE, 2004, 184 :1-18
[6]   Groups and Lie algebras corresponding to the Yang-Baxter equations [J].
Bartholdi, Laurent ;
Enriquez, Benjamin ;
Etingof, Pavel ;
Rains, Eric .
JOURNAL OF ALGEBRA, 2006, 305 (02) :742-764
[7]   Torsion subgroups of quasi-abelianized braid groups [J].
Beck, Vincent ;
Marin, Ivan .
JOURNAL OF ALGEBRA, 2020, 558 :3-23
[8]  
Bellingeri P, 2020, ANN I FOURIER, V70, P1341
[9]   Configuration spaces of rings and wickets [J].
Brendle, Tara E. ;
Hatcher, Allen .
COMMENTARII MATHEMATICI HELVETICI, 2013, 88 (01) :131-162
[10]   A journey through loop braid groups [J].
Damiani, Celeste .
EXPOSITIONES MATHEMATICAE, 2017, 35 (03) :252-285