Medical transformer for multimodal survival prediction in intensive care: integration of imaging and non-imaging data

被引:19
作者
Khader, Firas [1 ]
Kather, Jakob Nikolas [2 ,3 ,4 ,5 ]
Mueller-Franzes, Gustav [1 ]
Wang, Tianci [1 ]
Han, Tianyu [6 ]
Tayebi Arasteh, Soroosh [1 ]
Hamesch, Karim [2 ]
Bressem, Keno [7 ]
Haarburger, Christoph [8 ]
Stegmaier, Johannes [9 ]
Kuhl, Christiane [1 ]
Nebelung, Sven [1 ]
Truhn, Daniel [1 ]
机构
[1] Univ Hosp Aachen, Dept Diagnost & Intervent Radiol, Aachen, Germany
[2] Univ Hosp Aachen, Dept Med 3, Aachen, Germany
[3] Tech Univ Dresden, Med Fac Carl Gustav Carus, Else Kroener Fresenius Ctr Digital Hlth, Dresden, Germany
[4] Univ Leeds, Leeds Inst Med Res St Jamess, Div Pathol & Data Analyt, Leeds, England
[5] Univ Hosp Heidelberg, Natl Ctr Tumor Dis NCT, Med Oncol, Heidelberg, Germany
[6] Rhein Westfal TH Aachen, Phys Mol Imaging Syst, Expt Mol Imaging, Aachen, Germany
[7] Charite Univ Med Berlin, Dept Radiol, Berlin, Germany
[8] Ocumeda GmbH, Munich, Germany
[9] Rhein Westfal TH Aachen, Inst Imaging & Comp Vis, Aachen, Germany
关键词
MORTALITY PREDICTION; TOMOGRAPHY;
D O I
10.1038/s41598-023-37835-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
When clinicians assess the prognosis of patients in intensive care, they take imaging and non-imaging data into account. In contrast, many traditional machine learning models rely on only one of these modalities, limiting their potential in medical applications. This work proposes and evaluates a transformer-based neural network as a novel AI architecture that integrates multimodal patient data, i.e., imaging data (chest radiographs) and non-imaging data (clinical data). We evaluate the performance of our model in a retrospective study with 6,125 patients in intensive care. We show that the combined model (area under the receiver operating characteristic curve [AUROC] of 0.863) is superior to the radiographs-only model (AUROC = 0.811, p < 0.001) and the clinical data-only model (AUROC = 0.785, p < 0.001) when tasked with predicting in-hospital survival per patient. Furthermore, we demonstrate that our proposed model is robust in cases where not all (clinical) data points are available.
引用
收藏
页数:11
相关论文
共 42 条
[1]  
[Anonymous], 2013, Pmlr, DOI DOI 10.48550/ARXIV.1211.5063
[2]   Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach [J].
Awad, Aya ;
Bader-El-Den, Mohamed ;
McNicholas, James ;
Briggs, Jim .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2017, 108 :185-195
[3]   Comparing different deep learning architectures for classification of chest radiographs [J].
Bressem, Keno K. ;
Adams, Lisa C. ;
Erxleben, Christoph ;
Hamm, Bernd ;
Niehues, Stefan M. ;
Vahldiek, Janis L. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[4]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[5]  
Dixon S., 2021, DIAGNOSTIC IMAGING D
[6]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
[7]  
Johnson AEW, 2019, Arxiv, DOI arXiv:1901.07042
[8]   A Survey on Deep Learning for Multimodal Data Fusion [J].
Gao, Jing ;
Li, Peng ;
Chen, Zhikui ;
Zhang, Jianing .
NEURAL COMPUTATION, 2020, 32 (05) :829-864
[9]   PhysioBank, PhysioToolkit, and PhysioNet - Components of a new research resource for complex physiologic signals [J].
Goldberger, AL ;
Amaral, LAN ;
Glass, L ;
Hausdorff, JM ;
Ivanov, PC ;
Mark, RG ;
Mietus, JE ;
Moody, GB ;
Peng, CK ;
Stanley, HE .
CIRCULATION, 2000, 101 (23) :E215-E220
[10]   Critical care medicine in the United States 2000-2005: An analysis of bed numbers, occupancy rates, payer mix, and costs [J].
Halpern, Neil A. ;
Pastores, Stephen M. .
CRITICAL CARE MEDICINE, 2010, 38 (01) :65-71