A UNIVERSAL BOUND IN THE DIMENSIONAL BRUNN-MINKOWSKI INEQUALITY FOR LOG-CONCAVE MEASURES

被引:2
作者
Livshyts, Galyna V. [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Classification; Gaussian measure; Ehrhard inequality; Convex bodies; symmetry; Brunn-Minkowski inequality; Brascamp-Lieb inequality; Poincare inequality; equality case characterization; torsional rigidity; energy minimization; log-concave measures; CENTRAL-LIMIT-THEOREM; MAXIMAL SURFACE-AREA; CONVEX-BODIES; R-N; SECTIONS; POINCARE; RESPECT; SETS;
D O I
10.1090/tran/8976
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for any even log-concave probability measure mu on R-n, any pair of symmetric convex sets K and L, and any lambda is an element of [0, 1], mu((1-lambda)K +lambda L)(cn) >= (1-lambda)mu(K)(cn) +lambda mu(L)(cn), where c(n) >= n(-4-o(1)). This constitutes progress towards the dimensional Brunn-Minkowski conjecture (see Richard J. Gardner and Artem Zvavitch [Tran. Amer. Math. Soc. 362 (2010), pp. 5333-5353]; Andrea Colesanti, Galyna V. Livshyts, Arnaud Marsiglietti [J. Funct. Anal. 273 (2017), pp. 1120-1139]). Moreover, our bound improves for various special classes of logconcave measures.
引用
收藏
页码:6663 / 6680
页数:18
相关论文
共 62 条
[11]   ON EXTENSIONS OF BRUNN-MINKOWSKI AND PREKOPA-LEINDLER THEOREMS, INCLUDING INEQUALITIES FOR LOG CONCAVE FUNCTIONS, AND WITH AN APPLICATION TO DIFFUSION EQUATION [J].
BRASCAMP, HJ ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 22 (04) :366-389
[12]   AN ALMOST CONSTANT LOWER BOUND OF THE ISOPERIMETRIC COEFFICIENT IN THE KLS CONJECTURE [J].
Chen, Yuansi .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2021, 31 (01) :34-61
[13]  
Colesanti A., 2020, ADV ANAL GEOM, V2
[14]   From the Brunn-Minkowski inequality to a class of Poincare-type inequalities [J].
Colesanti, Andrea .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (05) :765-772
[15]   On the stability of Brunn-Minkowski type inequalities [J].
Colesanti, Andrea ;
Livshyts, Galyna V. ;
Marsiglietti, Arnaud .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (03) :1120-1139
[16]   Monotonicity and concavity of integral functionals involving area measures of convex bodies [J].
Colesanti, Andrea ;
Hug, Daniel ;
Gomez, Eugenia Saorin .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (02)
[17]   A Characterization of Some Mixed Volumes via the Brunn-Minkowski Inequality [J].
Colesanti, Andrea ;
Hug, Daniel ;
Gomez, Eugenia Saorin .
JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (02) :1064-1091
[18]   The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems [J].
Cordero-Erausquin, D ;
Fradelizi, M ;
Maurey, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 214 (02) :410-427
[19]   IMPROVED LOG-CONCAVITY FOR ROTATIONALLY INVARIANT MEASURES OF SYMMETRIC CONVEX SETS [J].
Cordero-Erausquin, Dario ;
Rotem, Liran .
ANNALS OF PROBABILITY, 2023, 51 (03) :987-1003
[20]   Interpolations, Convexity and Geometric Inequalities [J].
Cordero-Erausquin, Dario ;
Klartag, Bo'az .
GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR 2006-2010, 2012, 2050 :151-168