A UNIVERSAL BOUND IN THE DIMENSIONAL BRUNN-MINKOWSKI INEQUALITY FOR LOG-CONCAVE MEASURES

被引:2
作者
Livshyts, Galyna V. [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Classification; Gaussian measure; Ehrhard inequality; Convex bodies; symmetry; Brunn-Minkowski inequality; Brascamp-Lieb inequality; Poincare inequality; equality case characterization; torsional rigidity; energy minimization; log-concave measures; CENTRAL-LIMIT-THEOREM; MAXIMAL SURFACE-AREA; CONVEX-BODIES; R-N; SECTIONS; POINCARE; RESPECT; SETS;
D O I
10.1090/tran/8976
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for any even log-concave probability measure mu on R-n, any pair of symmetric convex sets K and L, and any lambda is an element of [0, 1], mu((1-lambda)K +lambda L)(cn) >= (1-lambda)mu(K)(cn) +lambda mu(L)(cn), where c(n) >= n(-4-o(1)). This constitutes progress towards the dimensional Brunn-Minkowski conjecture (see Richard J. Gardner and Artem Zvavitch [Tran. Amer. Math. Soc. 362 (2010), pp. 5333-5353]; Andrea Colesanti, Galyna V. Livshyts, Arnaud Marsiglietti [J. Funct. Anal. 273 (2017), pp. 1120-1139]). Moreover, our bound improves for various special classes of logconcave measures.
引用
收藏
页码:6663 / 6680
页数:18
相关论文
共 62 条
[1]  
Artstein-Avidan S., 2015, Asymptotic Geometric Analysis. Part I, V202, DOI DOI 10.1090/SURV/202
[2]   LOGARITHMICALLY CONCAVE FUNCTIONS AND SECTIONS OF CONVEX-SETS IN RN [J].
BALL, K .
STUDIA MATHEMATICA, 1988, 88 (01) :69-84
[3]  
Barthe F., 2020, Bull. Hell. Math. Soc., V64, P1
[4]   From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities [J].
Bobkov, SG ;
Ledoux, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (05) :1028-1052
[5]  
Böröczky KJ, 2015, J DIFFER GEOM, V99, P407
[6]  
Böröczky KJ, 2013, J AM MATH SOC, V26, P831
[7]   The log-Brunn-Minkowski inequality [J].
Boeroeczky, Karoly J. ;
Lutwak, Erwin ;
Yang, Deane ;
Zhang, Gaoyong .
ADVANCES IN MATHEMATICS, 2012, 231 (3-4) :1974-1997
[8]  
Borell Bor75b Christer, 1975, Period.Math.Hungar, V6, P111
[9]   The Ehrhard inequality [J].
Borell, C .
COMPTES RENDUS MATHEMATIQUE, 2003, 337 (10) :663-666
[10]   BRUNN-MINKOWSKI INEQUALITY IN GAUSS SPACE [J].
BORELL, C .
INVENTIONES MATHEMATICAE, 1975, 30 (02) :207-216