Two-geodesic-transitive graphs of odd order

被引:0
作者
Jin, Wei [1 ,2 ,3 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Stat, Nanchang 330013, Jiangxi, Peoples R China
[2] Jiangxi Univ Finance & Econ, Key Lab Data Sci Finance & Econ, Nanchang 330013, Jiangxi, Peoples R China
[3] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410075, Hunan, Peoples R China
关键词
2-geodesic-transitive graph; Automorphism group; Odd order; PERMUTATION-GROUPS; THEOREM;
D O I
10.1007/s10801-023-01253-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study (G, 2)-geodesic-transitive graphs of odd order. We first give a reduction result on this family of graphs: Let N be an intransitive normal subgroup of G. Suppose that such a graph F is neither (G, 2)-arc-transitive nor K-m[b] where mb is odd and m, b = 3. Then, we show that F is a cover of G(N), G/N is faithful and quasiprimitive on V (G(N)), G???????(N) is (G/N, s')-geodesic-transitive of odd order and girth 3 where s' = min{2, diam(G???????(N))}. We next investigate odd order (G, 2)-geodesic-transitive graphs where G acts quasiprimitively on the vertex set and determine all the possible quasiprimitive action types and give examples for them, and we also classify the family of (G, 2)-geodesic-transitive graphs of odd order where G is primitive of product action type on the vertex set. Finally, we find all the odd order 3-geodesic-transitive graphs which are covers of complete graphs.
引用
收藏
页码:291 / 305
页数:15
相关论文
共 28 条
[1]   A classification of 2-arc-transitive circulants [J].
Alspach, B ;
Conder, MDE ;
Marusic, D ;
Xu, MY .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1996, 5 (02) :83-86
[2]  
[Anonymous], 1999, Permutation Groups
[3]  
Biggs N., 1974, ALGEBRAIC GRAPH THEO, DOI DOI 10.1017/CBO9780511608704
[4]  
Brouwer A. E., 1989, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) Results in Mathematics and Related Areas (3), V18
[5]   Local 2-geodesic transitivity and clique graphs [J].
Devillers, Alice ;
Jin, Wei ;
Li, Cai Heng ;
Praeger, Cheryl E. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (02) :500-508
[6]  
Devillers A, 2013, ARS MATH CONTEMP, V6, P13
[7]   Locally s-distance transitive graphs [J].
Devillers, Alice ;
Giudici, Michael ;
Li, Cai Heng ;
Praeger, Cheryl E. .
JOURNAL OF GRAPH THEORY, 2012, 69 (02) :176-197
[8]  
Dixon J. D., 1996, Graduate Texts in Mathematics, DOI DOI 10.1007/978-1-4612-0731-3
[9]  
Du S.F., 1998, AUSTRALASIAN J COMBI, V18, P227
[10]   ON THE FULL AUTOMORPHISM GROUP OF A GRAPH [J].
GODSIL, CD .
COMBINATORICA, 1981, 1 (03) :243-256