ImUnity: A generalizable VAE-GAN solution for multicenter MR image harmonization

被引:18
作者
Cackowski, Stenzel [1 ]
Barbier, Emmanuel L. [1 ]
Dojat, Michel [1 ]
Christen, Thomas [1 ]
机构
[1] Univ Grenoble Alpes, Grenoble Inst Neurosci, Inserm, U1216, F-38000 Grenoble, France
关键词
Brain; Deep Adversarial Network; Data harmonization; Self-supervised learning; Radiomic features;
D O I
10.1016/j.media.2023.102799
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
ImUnity is an original 2.5D deep-learning model designed for efficient and flexible MR image harmonization. A VAE-GAN network, coupled with a confusion module and an optional biological preservation module, uses multiple 2D slices taken from different anatomical locations in each subject of the training database, as well as image contrast transformations for its training. It eventually generates 'corrected' MR images that can be used for various multi-center population studies. Using 3 open source databases (ABIDE, OASIS and SRPBS), which contain MR images from multiple acquisition scanner types or vendors and a large range of subjects ages, we show that ImUnity: (1) outperforms state-of-the-art methods in terms of quality of images generated using traveling subjects; (2) removes sites or scanner biases while improving patients classification; (3) harmonizes data coming from new sites or scanners without the need for an additional fine-tuning and (4) allows the selection of multiple MR reconstructed images according to the desired applications. Tested here on T1-weighted images, ImUnity could be used to harmonize other types of medical images.
引用
收藏
页数:9
相关论文
共 30 条
[1]   Deep Generative Medical Image Harmonization for Improving Cross-Site Generalization in Deep Learning Predictors [J].
Bashyam, Vishnu M. ;
Doshi, Jimit ;
Erus, Guray ;
Srinivasan, Dhivya ;
Abdulkadir, Ahmed ;
Singh, Ashish ;
Habes, Mohamad ;
Fan, Yong ;
Masters, Colin L. ;
Maruff, Paul ;
Zhuo, Chuanjun ;
Voelzke, Henry ;
Johnson, Sterling C. ;
Fripp, Jurgen ;
Koutsouleris, Nikolaos ;
Satterthwaite, Theodore D. ;
Wolf, Daniel H. ;
Gur, Raquel E. ;
Gur, Ruben C. ;
Morris, John C. ;
Albert, Marilyn S. ;
Grabe, Hans J. ;
Resnick, Susan M. ;
Bryan, Nick R. ;
Wittfeld, Katharina ;
Bulow, Robin ;
Wolk, David A. ;
Shou, Haochang ;
Nasrallah, Ilya M. ;
Davatzikos, Christos .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 55 (03) :908-916
[2]   Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging data [J].
Beer, Joanne C. ;
Tustison, Nicholas J. ;
Cook, Philip A. ;
Davatzikos, Christos ;
Sheline, Yvette, I ;
Shinohara, Russell T. ;
Linn, Kristin A. .
NEUROIMAGE, 2020, 220
[3]  
Choi Y, 2018, Arxiv, DOI arXiv:1711.09020
[4]  
Dewey B.E., 2019, MAGN RESON IMAGING
[5]   The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism [J].
Di Martino, A. ;
Yan, C-G ;
Li, Q. ;
Denio, E. ;
Castellanos, F. X. ;
Alaerts, K. ;
Anderson, J. S. ;
Assaf, M. ;
Bookheimer, S. Y. ;
Dapretto, M. ;
Deen, B. ;
Delmonte, S. ;
Dinstein, I. ;
Ertl-Wagner, B. ;
Fair, D. A. ;
Gallagher, L. ;
Kennedy, D. P. ;
Keown, C. L. ;
Keysers, C. ;
Lainhart, J. E. ;
Lord, C. ;
Luna, B. ;
Menon, V. ;
Minshew, N. J. ;
Monk, C. S. ;
Mueller, S. ;
Mueller, R. A. ;
Nebel, M. B. ;
Nigg, J. T. ;
O'Hearn, K. ;
Pelphrey, K. A. ;
Peltier, S. J. ;
Rudie, J. D. ;
Sunaert, S. ;
Thioux, M. ;
Tyszka, J. M. ;
Uddin, L. Q. ;
Verhoeven, J. S. ;
Wenderoth, N. ;
Wiggins, J. L. ;
Mostofsky, S. H. ;
Milham, M. P. .
MOLECULAR PSYCHIATRY, 2014, 19 (06) :659-667
[6]   Harmonization of multi-site diffusion tensor imaging data [J].
Fortin, Jean-Philippe ;
Parker, Drew ;
Tunc, Birkan ;
Watanabe, Takanori ;
Elliott, Mark A. ;
Ruparel, Kosha ;
Roalf, David R. ;
Satterthwaite, Theodore D. ;
Gur, Ruben C. ;
Gur, Raquel E. ;
Schultz, Robert T. ;
Verma, Ragini ;
Shinohara, Russell T. .
NEUROIMAGE, 2017, 161 :149-170
[7]   Removing inter-subject technical variability in magnetic resonance imaging studies [J].
Fortin, Jean-Philippe ;
Sweeney, Elizabeth M. ;
Muschelli, John ;
Crainiceanu, Ciprian M. ;
Shinohara, Russell T. .
NEUROIMAGE, 2016, 132 :198-212
[8]  
Ganin Y, 2016, Arxiv, DOI [arXiv:1505.07818, 10.48550/arXiv.1505.07818, DOI 10.48550/ARXIV.1505.07818]
[9]   Multi-site MRI harmonization via attention-guided deep domain adaptation for brain disorder identification [J].
Guan, Hao ;
Liu, Yunbi ;
Yang, Erkun ;
Yap, Pew-Thian ;
Shen, Dinggang ;
Liu, Mingxia .
MEDICAL IMAGE ANALYSIS, 2021, 71
[10]  
Huang X, 2017, Arxiv, DOI [arXiv:1703.06868, DOI 10.48550/ARXIV.1703.06868]