Particle-in-cell modeling of electron beam generated plasma

被引:11
作者
Rauf, Shahid [1 ]
Sydorenko, D. [2 ]
Jubin, S. [3 ]
Villafana, W. [3 ]
Ethier, S. [3 ]
Khrabrov, A. [3 ]
Kaganovich, I [3 ]
机构
[1] Appl Mat Inc, 3333 Scott Blvd, Santa Clara, CA 95054 USA
[2] Univ Alberta, Edmonton, AB T6G 2E9, Canada
[3] Princeton Plasma Phys Lab, 100 Stellarator Rd, Princeton, NJ 08543 USA
关键词
electron beam plasma; particle in cell; magnetized plasma; plasma modeling; atomic layer etch; atomic layer deposition; EMISSION;
D O I
10.1088/1361-6595/acd3a9
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Plasmas generated using energetic electron beams are well known for their low electron temperature (T (e)) and plasma potential, which makes them attractive for atomic-precision plasma processing applications such as atomic layer etch and deposition. A 2-dimensional particle-in-cell model for an electron beam-generated plasma in argon confined by a constant applied magnetic field is described in this article. Plasma production primarily occurs in the path of the beam electrons in the center of the chamber. The resulting plasma spreads out in the chamber through non-ambipolar diffusion with a short-circuiting effect allowing unequal electron and ion fluxes to different regions of the bounding conductive chamber walls. The cross-field transport of the electrons (and thus the steady-state characteristics of the plasma) are strongly impacted by the magnetic field. T (e) is anisotropic in the electron beam region, but low and isotropic away from the plasma production zone. The plasma density increases and the plasma becomes more confined near the region of production when the magnetic field strengthens. The magnetic field reduces both electron physical and energy transport perpendicular to the magnetic field. T (e) is uniform along the magnetic field lines and slowly decreases perpendicular to it. Electrons are less energetic in the sheath regions where the sheath electric field repels and confines the low-energy electrons from the bulk plasma. Even though electron and ion densities are similar in the bulk plasma due to quasi-neutrality, electron and ion fluxes on the grounded chamber walls are unequal at most locations. Electron confinement by the magnetic field weakens with increasing pressure, and the plasma spread out farther from the electron beam region.
引用
收藏
页数:12
相关论文
共 43 条
  • [1] Effect of simultaneous source and bias pulsing in inductively coupled plasma etching
    Agarwal, Ankur
    Stout, Phillip J.
    Banna, Samer
    Rauf, Shahid
    Tokashiki, Ken
    Lee, Jeong-Yun
    Collins, Ken
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 106 (10)
  • [2] [Anonymous], 2015, International Technology Roadmap for Seimiconductors 2.0 2015 Edition Executive Report
  • [3] Balay S., 2022, PETSC WEB PAGE
  • [4] Secondary Electron Emission on Space Materials: Evaluation of the Total Secondary Electron Yield From Surface Potential Measurements
    Balcon, N.
    Payan, D.
    Belhaj, M.
    Tondu, T.
    Inguimbert, V.
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2012, 40 (02) : 282 - 290
  • [5] Birdsall C. K., 2005, PLASMA PHYS VIA COMP
  • [6] Controlling the electron energy distribution function of electron beam generated plasmas with molecular gas concentration: I. Experimental results
    Boris, D. R.
    Petrov, G. M.
    Lock, E. H.
    Petrova, Tz B.
    Fernsler, R. F.
    Walton, S. G.
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2013, 22 (06)
  • [7] 2D axial-azimuthal particle-in-cell benchmark for low-temperature partially magnetized plasmas
    Charoy, T.
    Boeuf, J. P.
    Bourdon, A.
    Carlsson, J. A.
    Chabert, P.
    Cuenot, B.
    Eremin, D.
    Garrigues, L.
    Hara, K.
    Kaganovich, I. D.
    Powis, A. T.
    Smolyakov, A.
    Sydorenko, D.
    Tavant, A.
    Vermorel, O.
    Villafana, W.
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2019, 28 (10)
  • [8] Measurements of low-energy electron reflection at a plasma boundary
    Demidov, V. I.
    Adams, S. F.
    Kaganovich, I. D.
    Koepke, M. E.
    Kurlyandskaya, I. P.
    [J]. PHYSICS OF PLASMAS, 2015, 22 (10)
  • [9] Etching with atomic precision by using low electron temperature plasma
    Dorf, L.
    Wang, J-C
    Rauf, S.
    Monroy, G. A.
    Zhang, Y.
    Agarwal, A.
    Kenney, J.
    Ramaswamy, K.
    Collins, K.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (27)
  • [10] Atomic Layer Etch Using a Low Electron Temperature Plasma
    Dorf, L.
    Wang, J. -C.
    Rauf, S.
    Zhang, Y.
    Agarwal, A.
    Kenney, J.
    Ramaswamy, K.
    Collins, K.
    [J]. ADVANCED ETCH TECHNOLOGY FOR NANOPATTERNING V, 2016, 9782