Structural insights into electric field induced polarization and strain responses in K0.5Na0.5NbO3 modified morphotropic phase boundary compositions of Na0.5Bi0.5TiO3-based lead-free piezoelectrics

被引:5
|
作者
Das Adhikary, Gobinda [1 ]
Muleta, Gudeta Jafo [1 ]
Tina, Getaw Abebe [1 ]
Sharma, Deepak [1 ]
Mahale, Bhoopesh [1 ]
da Silva, Lucas Lemos [2 ,3 ]
Hinterstein, Manuel [2 ,3 ]
Senyshyn, Anatoliy [4 ]
Ranjan, Rajeev [1 ]
机构
[1] Indian Inst Sci, Dept Mat Engn, Bangalore 560012, India
[2] Fraunhofer IWM, D-79108 Freiburg, Germany
[3] Karlsruhe Inst Technol, Inst Appl Mat, D-76131 Karlsruhe, Germany
[4] Tech Univ Munich, Forsch Neutronenquelle Heinz Maier Leibnitz FRM 2, Lichtenbergstr 1, D-85747 Munich, Germany
关键词
FREE PIEZOCERAMICS; LOCAL-STRUCTURE; TEMPERATURE; NA1/2BI1/2TIO3; LUMINESCENCE; TRANSITIONS; MODULATION; MICROSCOPY; CERAMICS;
D O I
10.1103/PhysRevB.107.134108
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
K0.5Na0.5NbO3 (KNN)-modified morphotropic phase boundary (MPB) compositions of the two Na0.5Bi0.5TiO3-based lead-free piezoelectrics, namely, 0.94Na(0.5)Bi(0.5)TiO(3-0.06)BaTiO(3) (NBT-6BT) and 0.80Na(0.5)Bi(0.5)TiO(3-0.20)K(0.5)Bi(0.5)TiO(3) (NBT-20KBT) are model systems exhibiting large (>0.4%) electric-field-driven strain. There is a general perception that (i) increasing KNN concentration monotonically weakens the direct piezoelectric response (d(33)), and (ii) maximum electrostrain occurs when KNN pushes the system in the fully ergodic relaxor state. We have examined these issues using various complementary techniques involv-ing electrostrain, piezoelectric coefficient (d(33)), ferroelectric switching-current measurements, and field-driven structural studies on the global and local scales using laboratory and synchrotron x-ray diffraction, neutron powder diffraction, and Eu+3 photoluminescence techniques. Our investigations revealed the following important features: (i) In the low-concentration regime, KNN induces a tetragonal ferroelectric distortion, which improves the weak signal piezoresponse. (ii) Beyond a threshold concentration, in-phase octahedral tilt sets in and weakens the long-range ferroelectric order to partially stabilize an ergodic state. (iii) The maximum electrostrain (-0.6%) is achieved in the mixed (nonergodic + ergodic) state. (iv) The mixed state invariably exhibits a less-known phenomenon of field-driven ferroelectric-to-relaxor transformation during bipolar field cycling. (v) The enhanced electrostrain in the mixed state is associated with the electric field increasing the correlation lengths of the short-ranged tetragonal and rhombohedral ferroelectric regions without overall transformation of one phase to the other. We summarize the findings of this work in a comprehensive electric field composition (E-x) phase diagram. The findings reported here are likely to be true for other NBT-based MPB systems.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Electrical Properties of K0.5Na0.5NbO3 Lead-free Piezoceramics by Pressureless Sintering
    Zhang Dong-sheng
    Tian Ai-Fen
    JOURNAL OF INORGANIC MATERIALS, 2013, 28 (09) : 967 - 970
  • [12] Dielectric Spectroscopy of A-Site and B-Site Modified K0.5Na0.5NbO3–Bi0.5Na0.5TiO3 Based Material
    Parbati Naik
    Amrita Nayak
    Sunanda Kumari Patri
    Transactions on Electrical and Electronic Materials, 2023, 24 : 149 - 153
  • [13] New crystallographic dielectric phase boundary in K0.5Na0.5NbO3-based lead-free ceramics
    Liang, Wenfeng
    Wu, Wenjuan
    Xiao, Dingquan
    Zhu, Jvmu
    Zhu, Jianguo
    Wu, Jiagang
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2011, 5 (07): : 220 - 222
  • [14] High-field electromechanical response of Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 across its morphotropic phase boundary
    Moosavi, A.
    Bahrevar, M. A.
    Aghaei, A. R.
    Ramos, P.
    Alguero, M.
    Amorin, H.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (05)
  • [15] Microstructure and electrical properties of Li0.5Bi0.5TiO3-modified (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics
    Jiang, Xiang-Ping
    Yang, Qing
    Yu, Zu-Deng
    Hu, Fei
    Chen, Chao
    Tu, Na
    Li, Yue-Ming
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 493 (1-2) : 276 - 280
  • [16] Electric properties of high strain textured Na0.5Bi0.5TiO3-BaTiO3-K0.5Na0.5NbO3 thick films
    Fu, Fang
    Zhai, Jiwei
    Xu, Zhengkui
    Bai, Wangfeng
    Yao, Xi
    SOLID STATE SCIENCES, 2011, 13 (05) : 934 - 937
  • [17] Peculiarities of Modified Ceramics (Na0.5Bi0.5)TiO3-BaTiO3-(K0.5Na0.5)NbO3
    Kaleva, G. M.
    Politova, E. D.
    Mosunov, A. V.
    Ilina, T. S.
    Kiselev, D. A.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2023, 97 (05) : 965 - 970
  • [18] Ferroelectric and dielectric study in 0.78Na0.5Bi0.5TiO3-0.2SrTiO3-0.02K0.5Na0.5NbO3 lead free ceramic
    Singha, A.
    Praharaj, S.
    Rout, S. K.
    Verma, R.
    Rout, D.
    MATERIALS RESEARCH BULLETIN, 2021, 142
  • [19] Dielectric Properties of SrMnO3-doped K0.5Na0.5NbO3 Lead-Free Ceramics
    Deng, Jianming
    Sun, Xiaojun
    Liu, Laijun
    Liu, Saisai
    Huang, Yanmin
    Fang, Liang
    Elouadi, Brahim
    JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (08) : 4089 - 4099
  • [20] Phase-transformation-induced microstructure in lead-free ferroelectric ceramics based on (Bi0.5Na0.5)TiO3-BaTiO3-(Bi0.5K0.5)TiO3
    Cheng, Shun-Yu
    Shieh, Jay
    Ho, New-Jin
    Lu, Hong-Yang
    PHILOSOPHICAL MAGAZINE, 2011, 91 (31) : 4013 - 4032