On the dynamics of grounded shallow ice sheets: Modeling and analysis

被引:6
作者
Piersanti, Paolo [1 ,2 ]
Temam, Roger [1 ,2 ]
机构
[1] Indiana Univ Bloomington, Dept Math, 729 East Third St, Bloomington, IN 47405 USA
[2] Indiana Univ, Inst Sci Comp & Appl Math, 729 East Third St, Bloomington, IN 47405 USA
关键词
shallow ice approximation; doubly nonlinear equations; variational inequalities; penalty method; CONTACT PROBLEM; REGULARITY; SYSTEM; FLOW;
D O I
10.1515/anona-2022-0280
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we formulate a model describing the evolution of thickness of a grounded shallow ice sheet. The thickness of the ice sheet is constrained to be nonnegative. This renders the problem under consideration an obstacle problem. A rigorous analysis shows that the model is thus governed by a set of variational inequalities that involve nonlinearities in the time derivative and in the elliptic term, and that it admits solutions, whose existence is established by means of a semi-discrete scheme and the penalty method.
引用
收藏
页数:40
相关论文
共 63 条
  • [1] REFLECTIONS ON DUBINSKII'S NONLINEAR COMPACT EMBEDDING THEOREM
    Barrett, John W.
    Sueli, Endre
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2012, 91 (105): : 95 - 110
  • [2] Binz T, 2024, Arxiv, DOI arXiv:2209.13150
  • [3] Binz T, 2023, Arxiv, DOI arXiv:2209.14052
  • [4] On the solutions of a dynamic contact problem for a thermoelastic von Karman plate
    Bock, I.
    Jarusek, J.
    Silhavy, M.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 32 : 111 - 135
  • [5] Dynamic contact problem for a von Karman-Donnell shell
    Bock, Igor
    Jarusek, Jiri
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2013, 93 (10-11): : 733 - 744
  • [6] Bock I, 2009, TATRA MT MATH PUBL, V43, P25
  • [7] Brandt F, 2022, Arxiv, DOI arXiv:2209.12257
  • [8] Rigorous Analysis and Dynamics of Hibler's Sea Ice Model
    Brandt, Felix
    Disser, Karoline
    Haller-Dintelmann, Robert
    Hieber, Matthias
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (04)
  • [9] BREZIS H, 1972, J MATH PURE APPL, V51, P1
  • [10] Brezis H, 2011, UNIVERSITEXT, P1