Gravitational-gauge vector interaction in the Horava-Lifshitz framework

被引:1
作者
Restuccia, Alvaro [1 ]
Tello-Ortiz, Francisco [1 ]
机构
[1] Univ Antofagasta, Fac Ciencias Basicas, Dept Fis, Casilla 170, Antofagasta, Chile
关键词
quantum gravity; dimensional reduction; power-counting renormalizability; EINSTEIN-WEYL; GRAVITY; REDUCTION; DYNAMICS;
D O I
10.1088/1361-6382/acb62f
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
An anisotropic model describing gravity-vector gauge coupling at all energy scales is presented. The starting point is the 4+1 dimensional non-projectable Ho.rava-Lifshitz gravity theory subject to a geometrical restriction. Renormalizability arguments require all possible interactions in the potential up to terms with z= 4 spatial derivatives on the geometrical tensor fields: the Riemann and Weyl tensors. The latter being necessary on a 4+1 dimensional formulation. The dimensional reduction to 3+1 dimensions gives rise to a model invariant under foliation-preserving diffeomorphisms (FDiff) and U(1) symmetry groups. The reduced theory on the kinetic conformal point (lambda = 1/3), propagates the same spectrum of the Einstein-Maxwell theory. Moreover, at low energies, on the IR point alpha = 0, beta = 1, its field equations are exactly the Einstein-Maxwell ones in a particular gauge condition. The Minkowski ground state is stable provided several restrictions on the coupling parameters are satisfied, they are explicitly obtained. The quantum propagators of the physical degrees of freedom are obtained and after an analysis of the first and second class constraints the renormalizability by power counting is proved, provided that the aforementioned restrictions on the coupling parameters are satisfied.
引用
收藏
页数:18
相关论文
共 64 条
[1]   Multi-messenger Observations of a Binary Neutron Star Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Afrough, M. ;
Agarwal, B. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S. V. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Atallah, D. V. ;
Aufmuth, P. ;
Aulbert, C. ;
AultONeal, K. ;
Austin, C. ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. .
ASTROPHYSICAL JOURNAL LETTERS, 2017, 848 (02)
[2]  
Zadeh MA, 2020, Arxiv, DOI arXiv:1912.06495
[3]   Renormalization of Lorentz violating theories [J].
Anselmi, Damiano ;
Halat, Milenko .
PHYSICAL REVIEW D, 2007, 76 (12)
[4]   Weighted scale invariant quantum field theories [J].
Anselmi, Damiano .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (02)
[6]  
Arnowitt R, 2008, GEN RELAT GRAVIT, V40, P1997, DOI 10.1007/s10714-008-0661-1
[7]   Neutron star sensitivities in Horava gravity after GW170817 [J].
Barausse, Enrico .
PHYSICAL REVIEW D, 2019, 100 (08)
[8]   Towards the renormalization group flow of Horava gravity in 3+1 dimensions [J].
Barvinsky, Andrei O. ;
Herrero-Valea, Mario ;
Sibiryakov, Sergey M. .
PHYSICAL REVIEW D, 2019, 100 (02)
[9]   Horava Gravity is Asymptotically Free in 2+1 Dimensions [J].
Barvinsky, Andrei O. ;
Blas, Diego ;
Herrero-Valea, Mario ;
Sibiryakov, Sergey M. ;
Steinwachs, Christian F. .
PHYSICAL REVIEW LETTERS, 2017, 119 (21)
[10]   Renormalization of Horava gravity [J].
Barvinsky, Andrei O. ;
Blas, Diego ;
Herrero-Valea, Mario ;
Sibiryakov, Sergey M. ;
Steinwachs, Christian F. .
PHYSICAL REVIEW D, 2016, 93 (06)